We construct a probability measure which counts the pairs of closed commuting subgroups in locally compact groups, extending the ``subgroup commutativity degree'' of finite groups to pro-Lie groups. We use a topological approach via measure theory and the structure of the Chabauty spaces. An example of Andersen and Jessen shows some natural limitations in our approach, but for compact groups we present an alternative for the construction of the subgroup commutativity degree, using properties of the Chabauty spaces only.

A probabilistic measure for the number of commuting subgroups in locally compact groups

Russo F
Primo
2022-01-01

Abstract

We construct a probability measure which counts the pairs of closed commuting subgroups in locally compact groups, extending the ``subgroup commutativity degree'' of finite groups to pro-Lie groups. We use a topological approach via measure theory and the structure of the Chabauty spaces. An example of Andersen and Jessen shows some natural limitations in our approach, but for compact groups we present an alternative for the construction of the subgroup commutativity degree, using properties of the Chabauty spaces only.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/488407
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact