We discuss the finiteness of the topological entropy of continuous endomorphims for some classes of locally compact groups. Firstly, we focus on the abelian case, imposing the condition of being compactly generated, and note an interesting behaviour of slender groups. Secondly, we remove the condition of being abelian and consider nilpotent periodic locally compact $p$-groups ($p$ prime), reducing the computations to the case of Sylow $p$-subgroups. Finally, we investigate locally compact Heisenberg $p$-groups $\mathbb{H}_n(\mathbb{Q}_p)$ on the field $\mathbb{Q}_p$ of the $p$-adic rationals with $n$ arbitrary positive integer.

On locally compact groups of small topological entropy

Russo F
Primo
;
2024-01-01

Abstract

We discuss the finiteness of the topological entropy of continuous endomorphims for some classes of locally compact groups. Firstly, we focus on the abelian case, imposing the condition of being compactly generated, and note an interesting behaviour of slender groups. Secondly, we remove the condition of being abelian and consider nilpotent periodic locally compact $p$-groups ($p$ prime), reducing the computations to the case of Sylow $p$-subgroups. Finally, we investigate locally compact Heisenberg $p$-groups $\mathbb{H}_n(\mathbb{Q}_p)$ on the field $\mathbb{Q}_p$ of the $p$-adic rationals with $n$ arbitrary positive integer.
2024
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/488204
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact