Olivine LiMnxFe1−xPO4 (LMFP) cathodes are gaining attention as a promising alternative to LiFePO4 (LFP) for lithium-ion batteries (LIBs), offering higher energy density while maintaining lower costs and improved safety compared to traditional layered oxide cathodes. However, their low electronic conductivity remains a challenge. One effective strategy to enhance electrode kinetics is incorporating carbon additives during fabrication. This study examines the role of conductive additives optimization in LiMn0.7Fe0.3PO4 (LMFP73) electrodes and evaluates the impact of refining the electrode manufacturing to improve performance under practical conditions. Electrodes with 0.5% single-walled carbon nanotubes (SWCNTs) dispersion demonstrated improved performance. Optimization of mixing protocol, solid content, and coating speed, significantly enhanced the electrode’s microstructure, mechanical integrity, and electrochemical response, producing thick electrodes suitable for industrial use. Upscaling to Graphite|LMFP73 single-layer pouch (SLP) cells with 200 GSM cathode loading resulted in 110 mAh g⁻¹ at C/2, retaining 93% of the initial capacity after 100 cycles. This work provides practical process parameters to reduce the gap between academic and industrial perspectives in electrode performance assessment under realistic conditions, tackling challenges in performance improvement while taking into account high areal loadings, mechanical properties of the coatings, practical electrode balancing, and electrolyte amount in the cell fabrication process.
Assessing Manufacturing‐Performance Correlation On LiMn0.7Fe0.3PO4 Electrodes For Application In Upscaled Li‐ion Battery Cells
Minnetti, Luca;Nobili, Francesco;
2024-01-01
Abstract
Olivine LiMnxFe1−xPO4 (LMFP) cathodes are gaining attention as a promising alternative to LiFePO4 (LFP) for lithium-ion batteries (LIBs), offering higher energy density while maintaining lower costs and improved safety compared to traditional layered oxide cathodes. However, their low electronic conductivity remains a challenge. One effective strategy to enhance electrode kinetics is incorporating carbon additives during fabrication. This study examines the role of conductive additives optimization in LiMn0.7Fe0.3PO4 (LMFP73) electrodes and evaluates the impact of refining the electrode manufacturing to improve performance under practical conditions. Electrodes with 0.5% single-walled carbon nanotubes (SWCNTs) dispersion demonstrated improved performance. Optimization of mixing protocol, solid content, and coating speed, significantly enhanced the electrode’s microstructure, mechanical integrity, and electrochemical response, producing thick electrodes suitable for industrial use. Upscaling to Graphite|LMFP73 single-layer pouch (SLP) cells with 200 GSM cathode loading resulted in 110 mAh g⁻¹ at C/2, retaining 93% of the initial capacity after 100 cycles. This work provides practical process parameters to reduce the gap between academic and industrial perspectives in electrode performance assessment under realistic conditions, tackling challenges in performance improvement while taking into account high areal loadings, mechanical properties of the coatings, practical electrode balancing, and electrolyte amount in the cell fabrication process.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.