The aim of this systematic review and meta-analysis was to assess the association between exposure to ambient air pollutants and micronuclei (MN) frequency in children. This work was performed according to the Cochrane Collaboration and the PRISMA guidelines and recommendations. Articles published before November 2021 were identified by an advanced search on PubMed/MEDLINE, Scopus and Web of Science databases. A critical appraisal using a specific tool was conducted to assess the quality of each included study. All analyses were carried out by using the Review Manager (RevMan) 5.4 software (The Cochrane Collaboration, London, UK). One hundred and forty-five references were firstly identified, and, at the end of selection process, 13 studies met the inclusion criteria. Six studies carried out a direct evaluation through the use of air samplers, whereas the other ones accessed environmental databases (n = 2) or used other tools (n = 3). In two cases, exposure was not directly investigated, with children sampled in two different areas with well-known different levels of pollution. The overall effect size (ES) was 1.57 ((95% CI = 1.39; 1.78), p-value < 0.00001) (total evaluated subjects: 4162), which highlighted a statistically significant association between outdoor air pollution and MN frequency in children. As a high MN frequency has been associated with a number of pathological states and a higher risk of developing chronic degenerative diseases, our results should be taken into consideration by policy makers to design and implement interventions aimed at reducing the introduction of pollutants in the atmosphere as well as at minimizing the exposure extent, particularly in children.
Cytogenetic Effects in Children Exposed to Air Pollutants: A Systematic Review and Meta-Analysis
Acito, MattiaPrimo
;
2022-01-01
Abstract
The aim of this systematic review and meta-analysis was to assess the association between exposure to ambient air pollutants and micronuclei (MN) frequency in children. This work was performed according to the Cochrane Collaboration and the PRISMA guidelines and recommendations. Articles published before November 2021 were identified by an advanced search on PubMed/MEDLINE, Scopus and Web of Science databases. A critical appraisal using a specific tool was conducted to assess the quality of each included study. All analyses were carried out by using the Review Manager (RevMan) 5.4 software (The Cochrane Collaboration, London, UK). One hundred and forty-five references were firstly identified, and, at the end of selection process, 13 studies met the inclusion criteria. Six studies carried out a direct evaluation through the use of air samplers, whereas the other ones accessed environmental databases (n = 2) or used other tools (n = 3). In two cases, exposure was not directly investigated, with children sampled in two different areas with well-known different levels of pollution. The overall effect size (ES) was 1.57 ((95% CI = 1.39; 1.78), p-value < 0.00001) (total evaluated subjects: 4162), which highlighted a statistically significant association between outdoor air pollution and MN frequency in children. As a high MN frequency has been associated with a number of pathological states and a higher risk of developing chronic degenerative diseases, our results should be taken into consideration by policy makers to design and implement interventions aimed at reducing the introduction of pollutants in the atmosphere as well as at minimizing the exposure extent, particularly in children.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.