We performed a joined multitemporal and multiscale analysis of ground vertical movements around the main seismogenic source of Ischia island (Southern Italy) that, during historical and recent time, generated the most catastrophic earthquakes on the island, in its northern sector (Casamicciola fault). In particular, we considered InSAR (2015-2019) and ground-levelling data (1987-2010), attempting to better define the source that caused the recent 2017 earthquake and interpret its occurrence in the framework of a long-term behavior of the fault responsible for the major historical earthquakes in Casamicciola. Our results unambiguously constrain the location and the kinematics of the 2017 rupture and further confirm the presence of a relatively large sliding area west of the 2017 surface break. Overall, the studied seismogenic fault reveals a complex dynamic, moving differentially and aseismically in the pre- and post-seismic event, in response to the long-term subsidence of the central sector of the island, dominated by Mt. Epomeo. The fault segment that slipped coseismically also is evidence of post-seismic viscous relaxation. The long-term differential vertical movement on the apparently creeping eastern sector of the Casamicciola fault provides an estimate of the slip rate occurring on the fault (0.82 mm/y(-1)). The analysis of the time of occurrence and the magnitude of the known historical earthquakes reveals that this rate is consistent with the recurrence of the earthquakes that occurred during at least the past three centuries and suggests that the time to the next seismic event at Casamicciola might be a few decades. More generally, our findings provide evidence of the link between subsidence and earthquakes in volcanic areas indicating, in this case, a high hazard for the island of Ischia. Results might be also useful for characterizing capable faulting in similar volcano-tectonic settings worldwide.

Aseismic Creep, Coseismic Slip, and Postseismic Relaxation on Faults in Volcanic Areas: The Case of Ischia Island

Pino N. A.
Primo
;
2023-01-01

Abstract

We performed a joined multitemporal and multiscale analysis of ground vertical movements around the main seismogenic source of Ischia island (Southern Italy) that, during historical and recent time, generated the most catastrophic earthquakes on the island, in its northern sector (Casamicciola fault). In particular, we considered InSAR (2015-2019) and ground-levelling data (1987-2010), attempting to better define the source that caused the recent 2017 earthquake and interpret its occurrence in the framework of a long-term behavior of the fault responsible for the major historical earthquakes in Casamicciola. Our results unambiguously constrain the location and the kinematics of the 2017 rupture and further confirm the presence of a relatively large sliding area west of the 2017 surface break. Overall, the studied seismogenic fault reveals a complex dynamic, moving differentially and aseismically in the pre- and post-seismic event, in response to the long-term subsidence of the central sector of the island, dominated by Mt. Epomeo. The fault segment that slipped coseismically also is evidence of post-seismic viscous relaxation. The long-term differential vertical movement on the apparently creeping eastern sector of the Casamicciola fault provides an estimate of the slip rate occurring on the fault (0.82 mm/y(-1)). The analysis of the time of occurrence and the magnitude of the known historical earthquakes reveals that this rate is consistent with the recurrence of the earthquakes that occurred during at least the past three centuries and suggests that the time to the next seismic event at Casamicciola might be a few decades. More generally, our findings provide evidence of the link between subsidence and earthquakes in volcanic areas indicating, in this case, a high hazard for the island of Ischia. Results might be also useful for characterizing capable faulting in similar volcano-tectonic settings worldwide.
2023
seismic cycle
Ischia island
aseismic sleep
subsidence
fault creep
earthquakes
viscosity
strain
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/487184
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact