We propose a two-dimensional model of biochemical activation process, whereby self-propelling particles of finite correlation times are injected at the center of a circular cavity with constant rate equal to the inverse of their lifetime; activation is triggered when one such particle hits a receptor on the cavity boundary, modeled as a narrow pore. We numerically investigated this process by computing the particle mean-first exit times through the cavity pore as a function of the correlation and injection time constants. Due to the breach of the circular symmetry associated with the positioning of the receptor, the exit times may depend on the orientation of the self-propelling velocity at injection. Stochastic resetting appears to favor activation for large particle correlation times, where most of the underlying diffusion process occurs at the cavity boundary.
Narrow Pore Crossing of Active Particles under Stochastic Resetting
Zhang W.;Marchesoni F.
;
2023-01-01
Abstract
We propose a two-dimensional model of biochemical activation process, whereby self-propelling particles of finite correlation times are injected at the center of a circular cavity with constant rate equal to the inverse of their lifetime; activation is triggered when one such particle hits a receptor on the cavity boundary, modeled as a narrow pore. We numerically investigated this process by computing the particle mean-first exit times through the cavity pore as a function of the correlation and injection time constants. Due to the breach of the circular symmetry associated with the positioning of the receptor, the exit times may depend on the orientation of the self-propelling velocity at injection. Stochastic resetting appears to favor activation for large particle correlation times, where most of the underlying diffusion process occurs at the cavity boundary.File | Dimensione | Formato | |
---|---|---|---|
entropy-25-00271.pdf
accesso aperto
Tipologia:
Versione Editoriale
Licenza:
PUBBLICO - Creative Commons
Dimensione
1.2 MB
Formato
Adobe PDF
|
1.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.