We propose a generalization of the stochastic resetting mechanism for a Brownian particle diffusing in a one-dimensional periodic potential: randomly in time, the particle gets reset at the bottom of the potential well it was in. Numerical simulations show that in mirror asymmetric potentials, stochastic resetting rectifies the particle’s dynamics, with a maximum drift speed for an optimal average resetting time. Accordingly, an unbiased Brownian tracer diffusing on an asymmetric substrate can rectify its motion by adopting an adaptive stop-and-go strategy. Our proposed ratchet mechanism can model the directed autonomous motion of molecular motors and micro-organisms.

Autonomous ratcheting by stochastic resetting

Marchesoni F.
2023-01-01

Abstract

We propose a generalization of the stochastic resetting mechanism for a Brownian particle diffusing in a one-dimensional periodic potential: randomly in time, the particle gets reset at the bottom of the potential well it was in. Numerical simulations show that in mirror asymmetric potentials, stochastic resetting rectifies the particle’s dynamics, with a maximum drift speed for an optimal average resetting time. Accordingly, an unbiased Brownian tracer diffusing on an asymmetric substrate can rectify its motion by adopting an adaptive stop-and-go strategy. Our proposed ratchet mechanism can model the directed autonomous motion of molecular motors and micro-organisms.
2023
262
File in questo prodotto:
File Dimensione Formato  
031101_1_5.0159148.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.84 MB
Formato Adobe PDF
4.84 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/486624
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact