We investigate the relation between topological and vibrational properties of networked materials by analyzing, both numerically and analytically, the properties of a random spring network model. We establish a pseudodispersion relation, which allows us to predict the existence of distinct transitions from extended to localized vibrational modes in this class of materials. Consequently, we propose an alternative method to control phonon and elastic wave propagation in disordered networks. In particular, the phonon band gap of our spring network model can be enhanced by either increasing its average degree or decreasing its assortativity coefficient. Applications to phonon band engineering and vibrational energy harvesting are briefly discussed.
Phononic band gap in random spring networks
Marchesoni F.;
2023-01-01
Abstract
We investigate the relation between topological and vibrational properties of networked materials by analyzing, both numerically and analytically, the properties of a random spring network model. We establish a pseudodispersion relation, which allows us to predict the existence of distinct transitions from extended to localized vibrational modes in this class of materials. Consequently, we propose an alternative method to control phonon and elastic wave propagation in disordered networks. In particular, the phonon band gap of our spring network model can be enhanced by either increasing its average degree or decreasing its assortativity coefficient. Applications to phonon band engineering and vibrational energy harvesting are briefly discussed.File | Dimensione | Formato | |
---|---|---|---|
PhysRevE.108.044306.pdf
solo gestori di archivio
Tipologia:
Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.93 MB
Formato
Adobe PDF
|
3.93 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.