We consider the direct scattering problem that consists of the computation of the scattered wave generated by an incident plane wave and an inhomogeneous object defined in terms of the refractive index. From some suitable physical and geometrical hypotheses, this is formulated as a boundary value problem for the Helmholtz equation and, in turn, as the Lippman-Schwinger equation. For the numerical solution of this integral equation, we propose an approximation approach by using Radial Basis Functions (RBF), which allows a relevant reduction in the computational cost of the numerical procedure. This new method is described in full detail and its performance is shown by using a wide numerical experiment for the approximate solution of the Lippman-Schwinger equation with different approaches.

RBF Approximation of the Lippmann-Schwinger Equation

Egidi, Nadaniela;Giacomini, Josephin;Maponi, Pierluigi
2023-01-01

Abstract

We consider the direct scattering problem that consists of the computation of the scattered wave generated by an incident plane wave and an inhomogeneous object defined in terms of the refractive index. From some suitable physical and geometrical hypotheses, this is formulated as a boundary value problem for the Helmholtz equation and, in turn, as the Lippman-Schwinger equation. For the numerical solution of this integral equation, we propose an approximation approach by using Radial Basis Functions (RBF), which allows a relevant reduction in the computational cost of the numerical procedure. This new method is described in full detail and its performance is shown by using a wide numerical experiment for the approximate solution of the Lippman-Schwinger equation with different approaches.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/485870
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact