We present geometric numerical integrators for contact flows that stem from a discretization of Herglotz' variational principle. First we show that the resulting discrete map is a contact transformation and that any contact map can be derived from a variational principle. Then we discuss the backward error analysis of our variational integrators, including the construction of a modified Lagrangian. Throughout the paper we use the damped harmonic oscillator as a benchmark example to compare our integrators to their symplectic analogues.
Contact variational integrators
Bravetti ASecondo
;
2019-01-01
Abstract
We present geometric numerical integrators for contact flows that stem from a discretization of Herglotz' variational principle. First we show that the resulting discrete map is a contact transformation and that any contact map can be derived from a variational principle. Then we discuss the backward error analysis of our variational integrators, including the construction of a modified Lagrangian. Throughout the paper we use the damped harmonic oscillator as a benchmark example to compare our integrators to their symplectic analogues.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.