We present geometric numerical integrators for contact flows that stem from a discretization of Herglotz' variational principle. First we show that the resulting discrete map is a contact transformation and that any contact map can be derived from a variational principle. Then we discuss the backward error analysis of our variational integrators, including the construction of a modified Lagrangian. Throughout the paper we use the damped harmonic oscillator as a benchmark example to compare our integrators to their symplectic analogues.

Contact variational integrators

Bravetti A
Secondo
;
2019-01-01

Abstract

We present geometric numerical integrators for contact flows that stem from a discretization of Herglotz' variational principle. First we show that the resulting discrete map is a contact transformation and that any contact map can be derived from a variational principle. Then we discuss the backward error analysis of our variational integrators, including the construction of a modified Lagrangian. Throughout the paper we use the damped harmonic oscillator as a benchmark example to compare our integrators to their symplectic analogues.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/484807
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 32
social impact