We prove that, under some natural conditions, Hamiltonian systems on a contact manifold C can be split into a Reeb dynamics on an open subset of C and a Liouville dynamics on a submanifold of C of codimension 1. For the Reeb dynamics we find an invariant measure. Moreover, we show that, under certain completeness conditions, the existence of an invariant measure for the Liouville dynamics can be characterized using the notion of a symplectic sandwich with contact bread.

Invariant measures for contact Hamiltonian systems: symplectic sandwiches with contact bread

Bravetti A
Primo
;
2020-01-01

Abstract

We prove that, under some natural conditions, Hamiltonian systems on a contact manifold C can be split into a Reeb dynamics on an open subset of C and a Liouville dynamics on a submanifold of C of codimension 1. For the Reeb dynamics we find an invariant measure. Moreover, we show that, under certain completeness conditions, the existence of an invariant measure for the Liouville dynamics can be characterized using the notion of a symplectic sandwich with contact bread.
2020
262
File in questo prodotto:
File Dimensione Formato  
Bravetti_2020_J._Phys._A__Math._Theor._53_455205.pdf

solo gestori di archivio

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/484793
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 20
social impact