Background: Knockdown resistance (kdr) is one of the primary resistance mechanisms present in anopheline species. Although this mutation is largely spread across the Anopheles gambiae s.l. members, its prevalence in other species is still not well documented. Methods: The present study investigated the distribution and allelic frequencies of kdr in An. gambiae s.l., An. pharoensis, and An. ziemanni samples collected in 2022 and 2023 in nine sites spread across five ecogeographical settings in Cameroon. Members of the An. gambiae complex were identified molecularly by polymerase chain reaction (PCR). kdr L1014F and L1014S alleles were screened by PCR and confirmed by sequencing. Results: An. gambiae (49.9%), An. coluzzii (36.5%), and An. arabiensis (13%) were identified, and the frequency of the kdr L1014F was high in both An. gambiae and An. coluzzii in all sites. The kdr L1014F allele was detected for the first time in 8 out of 14 An. ziemanni samples examined and in 5 out of 22 An. pharoensis samples examined. The kdr L1014S allele was scarce and found only in the heterozygote "RS" state in An. arabiensis and An. gambiae in Yangah and Santchou. Conclusions: The present study sheds light on the rapid expansion of the kdr L1014F allele in malaria vectors in Cameroon and stresses the need for surveillance activities also targeting secondary malaria vectors to improve the control of malaria transmission.
First detection of kdr L1014F allele in Anopheles ziemanni and Anopheles pharoensis in Cameroon and distribution of the allele in members of the Anopheles gambiae complex
Mayi, Marie Paul AudreyPrimo
;Damiani, Claudia;Cappelli, Alessia;Ricci, Irene;Favia, Guido
Ultimo
2024-01-01
Abstract
Background: Knockdown resistance (kdr) is one of the primary resistance mechanisms present in anopheline species. Although this mutation is largely spread across the Anopheles gambiae s.l. members, its prevalence in other species is still not well documented. Methods: The present study investigated the distribution and allelic frequencies of kdr in An. gambiae s.l., An. pharoensis, and An. ziemanni samples collected in 2022 and 2023 in nine sites spread across five ecogeographical settings in Cameroon. Members of the An. gambiae complex were identified molecularly by polymerase chain reaction (PCR). kdr L1014F and L1014S alleles were screened by PCR and confirmed by sequencing. Results: An. gambiae (49.9%), An. coluzzii (36.5%), and An. arabiensis (13%) were identified, and the frequency of the kdr L1014F was high in both An. gambiae and An. coluzzii in all sites. The kdr L1014F allele was detected for the first time in 8 out of 14 An. ziemanni samples examined and in 5 out of 22 An. pharoensis samples examined. The kdr L1014S allele was scarce and found only in the heterozygote "RS" state in An. arabiensis and An. gambiae in Yangah and Santchou. Conclusions: The present study sheds light on the rapid expansion of the kdr L1014F allele in malaria vectors in Cameroon and stresses the need for surveillance activities also targeting secondary malaria vectors to improve the control of malaria transmission.File | Dimensione | Formato | |
---|---|---|---|
Mayi et al. 2024.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Versione Editoriale
Licenza:
PUBBLICO - Creative Commons
Dimensione
1.75 MB
Formato
Adobe PDF
|
1.75 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.