In this study, a novel composite was engineered by integrating Zr-MOF (NH2-UIO-66) with MXene layers through electrostatic self-assembly. Under simulated sunlight and at 80 °C, this composite material achieved nearly complete conversion of low-concentration atmospheric CO2 to CO and CH4 without additional sacrificial agents or alkaline absorption liquids, marking one of the few reports demonstrating near-complete reduction of low-concentration CO2 directly from the air. For high-concentration CO2 in industrial flue gas, the composite utilized residual heat at 80 °C without additional energy input, exhibiting excellent CO2 reduction efficiency with CO and CH4 production rates of 127 μmol·g-1·h-1 and 330 μmol·g-1·h-1, respectively, resulting in a total production rate 4.76 times higher than that in the air. Compared to most reports on thermocatalytic CO2 reduction (>300 °C), this material shows significant advantages below 100 °C. The performance improvement is attributed to the introduction of Zr-MOF, which provides additional active sites and reduces activation energy. Additionally, the localized surface plasmon resonance (LSPR) effect of MXene facilitates the migration of thermal charge carriers to Zr4+ sites within the MOF. Density Functional Theory (DFT) calculations validate these findings. Overall, Zr-MOF/MXene composite holds potential for reducing CO2 in air and industrial settings, advancing energy conversion and environmental management.

Zr-MOF/MXene composite for enhanced photothermal catalytic CO2 reduction in atmospheric and industrial flue gas streams

Li, Cong;Berrettoni, Mario;
2024-01-01

Abstract

In this study, a novel composite was engineered by integrating Zr-MOF (NH2-UIO-66) with MXene layers through electrostatic self-assembly. Under simulated sunlight and at 80 °C, this composite material achieved nearly complete conversion of low-concentration atmospheric CO2 to CO and CH4 without additional sacrificial agents or alkaline absorption liquids, marking one of the few reports demonstrating near-complete reduction of low-concentration CO2 directly from the air. For high-concentration CO2 in industrial flue gas, the composite utilized residual heat at 80 °C without additional energy input, exhibiting excellent CO2 reduction efficiency with CO and CH4 production rates of 127 μmol·g-1·h-1 and 330 μmol·g-1·h-1, respectively, resulting in a total production rate 4.76 times higher than that in the air. Compared to most reports on thermocatalytic CO2 reduction (>300 °C), this material shows significant advantages below 100 °C. The performance improvement is attributed to the introduction of Zr-MOF, which provides additional active sites and reduces activation energy. Additionally, the localized surface plasmon resonance (LSPR) effect of MXene facilitates the migration of thermal charge carriers to Zr4+ sites within the MOF. Density Functional Theory (DFT) calculations validate these findings. Overall, Zr-MOF/MXene composite holds potential for reducing CO2 in air and industrial settings, advancing energy conversion and environmental management.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/483963
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact