We combined compositional analyses, crystal size distributions and geothermobarometry of tephra erupted during the 2021 Tajogaite eruption (La Palma, Spain), focusing on samples collected in November 2021 associated with a period of abundant ash emission characteristic of the second half of the eruption (from October onwards). Magma erupted in November exhibits a more primitive basanitic composition than the earlier magma. Crystallisation temperatures range between ~1100–1160 °C (H2O = 1–3 wt.%) for phenocrysts and microphenocrysts, with corresponding pressures indicating depths from ~10 to ~30 km. Crystal size distribution analysis reveals short (minutes) residence times for plagioclase. Finally, magma ascent velocities (~0.01–0.3 m s−1) suggest acceleration and fragmentation in the shallowest part of the conduit. Our results suggest that the trigger of the November explosive activity can be attributed to complex feedback between gas emission rates, changes in conduit geometry, and magma ascent rate.

Magma residence time, ascent rate and eruptive style of the November ash-laden activity during the 2021 Tajogaite eruption (La Palma, Spain)

Arzilli, Fabio;
2024-01-01

Abstract

We combined compositional analyses, crystal size distributions and geothermobarometry of tephra erupted during the 2021 Tajogaite eruption (La Palma, Spain), focusing on samples collected in November 2021 associated with a period of abundant ash emission characteristic of the second half of the eruption (from October onwards). Magma erupted in November exhibits a more primitive basanitic composition than the earlier magma. Crystallisation temperatures range between ~1100–1160 °C (H2O = 1–3 wt.%) for phenocrysts and microphenocrysts, with corresponding pressures indicating depths from ~10 to ~30 km. Crystal size distribution analysis reveals short (minutes) residence times for plagioclase. Finally, magma ascent velocities (~0.01–0.3 m s−1) suggest acceleration and fragmentation in the shallowest part of the conduit. Our results suggest that the trigger of the November explosive activity can be attributed to complex feedback between gas emission rates, changes in conduit geometry, and magma ascent rate.
2024
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/483788
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact