Explosivity of basaltic eruptions is related to the efficiency in which exsolved gas can separate from the melt during ascent, which is controlled by magma permeability. However, basaltic pyroclasts from eruptions of varying explosivity can show similar permeability, indicating a possible complex relationship between permeability, outgassing and eruptive style. Here, we provide 3D measurements of basaltic pyroclasts using X-ray microtomography. We inves- tigate the role of permeability and outgassing on magma ascent dynamics by using a numerical conduit model. Among the permeable parameters, bubble number density and friction coefficient largely affect explosivity. However, for fast ascending basaltic magmas, gas-melt coupling is maintained independent of magma permeability. In this case, magma storage conditions may determine eruptive style, driving rapid magma ascent, crystallisation and bubble nucleation, producing a highly explosive eruption. Monitoring parameters which reveal pre-eruptive conditions may assist hazard mitigation, particularly for basaltic systems which exhibit a wide range in eruptive style.

Outgassing behaviour during highly explosive basaltic eruptions

Bamber, Emily C.;La Spina, Giuseppe;Arzilli, Fabio;
2024-01-01

Abstract

Explosivity of basaltic eruptions is related to the efficiency in which exsolved gas can separate from the melt during ascent, which is controlled by magma permeability. However, basaltic pyroclasts from eruptions of varying explosivity can show similar permeability, indicating a possible complex relationship between permeability, outgassing and eruptive style. Here, we provide 3D measurements of basaltic pyroclasts using X-ray microtomography. We inves- tigate the role of permeability and outgassing on magma ascent dynamics by using a numerical conduit model. Among the permeable parameters, bubble number density and friction coefficient largely affect explosivity. However, for fast ascending basaltic magmas, gas-melt coupling is maintained independent of magma permeability. In this case, magma storage conditions may determine eruptive style, driving rapid magma ascent, crystallisation and bubble nucleation, producing a highly explosive eruption. Monitoring parameters which reveal pre-eruptive conditions may assist hazard mitigation, particularly for basaltic systems which exhibit a wide range in eruptive style.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/483787
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact