Rationale: In 2018, the International Classification of Diseases (ICD-11) classified Gaming Disorder (GD) as a mental disorder. GD mainly occurs among adolescents, who, after developing addiction, show psychopathological traits, such as social anxiety, depression, social isolation, and attention deficit. However, the different studies conducted in humans so far show several limitations, such as the lack of demographic heterogeneity and equal representation of age, differences in the type of game and in the follow-up period. Furthermore, at present, no animal models specific to GD are available. Objectives: To address the lack of an experimental model for GD, in the present work, we proposed a new GD rat model to investigate some peculiar tracts of the disorder. Methods: Two-month-old Wistar Kyoto rats, both males and females, were subject to a five-week training with a new innovative touch-screen platform. After five weeks of training, rats were assessed for: (a) their attachment to the play under several conditions, (b) their hyperactivity during gaming, and (c) the maintenance of these conditions after a period of game pause and reward interruption. After sacrifice, using immunohistochemistry techniques, the immunoreactivity of c-Fos (a marker of neuronal activity) was analyzed to study different neural areas. Results: After the training, the rats subjected to GD protocol developed GD-related traits (e.g., hyperactivity, loss control), and the behavioral phenotype was maintained consistently over time. These aspects were completely absent in the control groups. Lastly, the analysis of c-Fos immunoreactivity in prelimbic cortex (PrL), orbitofrontal cortex (OFC), nucleus Accumbens, amygdala and bed nucleus of stria terminalis (BNST) highlighted significant alterations in the GD groups compared to controls, suggesting modifications in neural activity related to the development of the GD phenotype. Conclusions: The proposal of a new GD rat model could represent an innovative tool to investigate, in both sexes, the behavioral and neurobiological features of this disorder, the possible role of external factors in the predisposition and susceptibility and the development of new pharmacological therapies.

Novel rat model of gaming disorder: assessment of social reward and sex differences in behavior and c-Fos brain activity

Casile, Antonino
Primo
;
Micioni Di Bonaventura, Maria Vittoria;Cifani, Carlo
Penultimo
;
2024-01-01

Abstract

Rationale: In 2018, the International Classification of Diseases (ICD-11) classified Gaming Disorder (GD) as a mental disorder. GD mainly occurs among adolescents, who, after developing addiction, show psychopathological traits, such as social anxiety, depression, social isolation, and attention deficit. However, the different studies conducted in humans so far show several limitations, such as the lack of demographic heterogeneity and equal representation of age, differences in the type of game and in the follow-up period. Furthermore, at present, no animal models specific to GD are available. Objectives: To address the lack of an experimental model for GD, in the present work, we proposed a new GD rat model to investigate some peculiar tracts of the disorder. Methods: Two-month-old Wistar Kyoto rats, both males and females, were subject to a five-week training with a new innovative touch-screen platform. After five weeks of training, rats were assessed for: (a) their attachment to the play under several conditions, (b) their hyperactivity during gaming, and (c) the maintenance of these conditions after a period of game pause and reward interruption. After sacrifice, using immunohistochemistry techniques, the immunoreactivity of c-Fos (a marker of neuronal activity) was analyzed to study different neural areas. Results: After the training, the rats subjected to GD protocol developed GD-related traits (e.g., hyperactivity, loss control), and the behavioral phenotype was maintained consistently over time. These aspects were completely absent in the control groups. Lastly, the analysis of c-Fos immunoreactivity in prelimbic cortex (PrL), orbitofrontal cortex (OFC), nucleus Accumbens, amygdala and bed nucleus of stria terminalis (BNST) highlighted significant alterations in the GD groups compared to controls, suggesting modifications in neural activity related to the development of the GD phenotype. Conclusions: The proposal of a new GD rat model could represent an innovative tool to investigate, in both sexes, the behavioral and neurobiological features of this disorder, the possible role of external factors in the predisposition and susceptibility and the development of new pharmacological therapies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/480923
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact