Chronic sleep restriction (CSR) is a prevalent issue in modern society that is associated with several pathological states, ranging from neuropsychiatric to metabolic diseases. Despite its known impact on metabolism, the specific effects of CSR on the molecular mechanisms involved in maintaining metabolic homeostasis at the level of white adipose tissue (WAT) remain poorly understood. Therefore, this study aimed to investigate the influence of CSR on sirtuin 1 (SIRT1) and the peroxisome proliferator-activated receptor gamma (PPAR gamma) signaling pathway in the WAT of young male mice. Both genes interact with specific targets involved in multiple metabolic processes, including adipocyte differentiation, browning, and lipid metabolism. The quantitative PCR (qPCR) results demonstrated a significant upregulation of SIRT-1 and some of its target genes associated with the transcriptional regulation of lipid homeostasis (i.e., PPAR alpha, PPAR gamma, PGC-1 alpha, and SREBF) and adipose tissue development (i.e., leptin, adiponectin) in CSR mice. On the contrary, DNA-binding transcription factors (i.e., CEBP-beta and C-myc), which play a pivotal function during the adipogenesis process, were found to be down-regulated. Our results also suggest that the induction of SIRT1-dependent molecular pathways prevents weight gain. Overall, these findings offer new, valuable insights into the molecular adaptations of WAT to CSR, in order to support increased energy demand due to sleep loss.
Effects of Chronic Sleep Restriction on Transcriptional Sirtuin 1 Signaling Regulation in Male Mice White Adipose Tissue
Rendine, Marco;Cocci, Paolo;de Vivo, Luisa;Bellesi, Michele;Palermo, Francesco Alessandro
2024-01-01
Abstract
Chronic sleep restriction (CSR) is a prevalent issue in modern society that is associated with several pathological states, ranging from neuropsychiatric to metabolic diseases. Despite its known impact on metabolism, the specific effects of CSR on the molecular mechanisms involved in maintaining metabolic homeostasis at the level of white adipose tissue (WAT) remain poorly understood. Therefore, this study aimed to investigate the influence of CSR on sirtuin 1 (SIRT1) and the peroxisome proliferator-activated receptor gamma (PPAR gamma) signaling pathway in the WAT of young male mice. Both genes interact with specific targets involved in multiple metabolic processes, including adipocyte differentiation, browning, and lipid metabolism. The quantitative PCR (qPCR) results demonstrated a significant upregulation of SIRT-1 and some of its target genes associated with the transcriptional regulation of lipid homeostasis (i.e., PPAR alpha, PPAR gamma, PGC-1 alpha, and SREBF) and adipose tissue development (i.e., leptin, adiponectin) in CSR mice. On the contrary, DNA-binding transcription factors (i.e., CEBP-beta and C-myc), which play a pivotal function during the adipogenesis process, were found to be down-regulated. Our results also suggest that the induction of SIRT1-dependent molecular pathways prevents weight gain. Overall, these findings offer new, valuable insights into the molecular adaptations of WAT to CSR, in order to support increased energy demand due to sleep loss.File | Dimensione | Formato | |
---|---|---|---|
cimb-46-00138.pdf
accesso aperto
Tipologia:
Versione Editoriale
Licenza:
PUBBLICO - Creative Commons
Dimensione
968.45 kB
Formato
Adobe PDF
|
968.45 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.