Abaca is a strong competitor among natural fibres for use as the reinforcement of polymer composites. Due to its high durability, considerable fibre length, flexibility and mechanical strength, abaca shows good potential as a renewable source of fibres for application in technological and industrial fields. Discussing the influence of various treatment strategies, such as alkali and silane, for the preparation of abaca-based composites results in the improvement of their properties over that of bare polymer materials and that of other synthetic fibres. The enhanced characteristics of abaca fibre reinforced composites are widely explored for a variety of applications in automotive and other industries. These include for example roping and woven fabrics, currency notes, cigarette filter papers, vacuum bags, tea bags, cellulose pulp for paper and packaging, and materials for automotive components, etc. In particular, the effective use of abaca fibre reinforced polymer composite in manufacturing external parts of cars, using therefore also thermoplastic matrices, has become popular. The gaps in research from the literature that show the scarcity of studies on topics such as simulation and designing of mechanical characteristics of abaca fibre composites constructed on polymer matrices, such as epoxy, polylactide, high density polyethylene, phenol formaldehyde and polyester are also highlighted. The results indicate that abaca is particularly flexible to be used in different sectors, in combination with various matrices, and in hybrid composites with various fibres. Further work would necessarily involve the larger consideration of abaca textiles with different areal weights in the production of composites, and a widespread introduction of abaca in datasets for the automated selection of natural fibres for composites reinforcement.

A comprehensive review on the mechanical, physical, and thermal properties of abaca fibre for their introduction into structural polymer composites

Santulli, Carlo
Penultimo
;
Kumar, Praveen
2023-01-01

Abstract

Abaca is a strong competitor among natural fibres for use as the reinforcement of polymer composites. Due to its high durability, considerable fibre length, flexibility and mechanical strength, abaca shows good potential as a renewable source of fibres for application in technological and industrial fields. Discussing the influence of various treatment strategies, such as alkali and silane, for the preparation of abaca-based composites results in the improvement of their properties over that of bare polymer materials and that of other synthetic fibres. The enhanced characteristics of abaca fibre reinforced composites are widely explored for a variety of applications in automotive and other industries. These include for example roping and woven fabrics, currency notes, cigarette filter papers, vacuum bags, tea bags, cellulose pulp for paper and packaging, and materials for automotive components, etc. In particular, the effective use of abaca fibre reinforced polymer composite in manufacturing external parts of cars, using therefore also thermoplastic matrices, has become popular. The gaps in research from the literature that show the scarcity of studies on topics such as simulation and designing of mechanical characteristics of abaca fibre composites constructed on polymer matrices, such as epoxy, polylactide, high density polyethylene, phenol formaldehyde and polyester are also highlighted. The results indicate that abaca is particularly flexible to be used in different sectors, in combination with various matrices, and in hybrid composites with various fibres. Further work would necessarily involve the larger consideration of abaca textiles with different areal weights in the production of composites, and a widespread introduction of abaca in datasets for the automated selection of natural fibres for composites reinforcement.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/479629
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact