Plastic pollution poses a significant threat to both ecosystems and human health, as fragments of microscale size are daily inhaled and ingested. Such tiny specks are defined as microplastics (MPs), and although their presence as environmental contaminants is ubiquitous in the world, their possible effects at biological and physiological levels are still not clear. To explore the potential impacts of MP exposure, we produced and characterized polyethylene terephthalate (PET) micro-fragments, then administered them to living cells. PET is widely employed in the production of plastic bottles, and thus represents a potential source of environmental MPs. However, its potential effects on public health are hardly investigated, as the current bio-medical research on MPs mainly utilizes different models, such as polystyrene particles. This study employed cell viability assays and Western blot analysis to demonstrate cell-dependent and dose-dependent cytotoxic effects of PET MPs, as well as a significant impact on HER-2-driven signaling pathways. Our findings provide insight into the biological effects of MP exposure, particularly for a widely used but poorly investigated material such as PET.
Insights into the effect of polyethylene terephthalate (PET) microplastics on HER2 signaling pathways
Marchini C.
Ultimo
2023-01-01
Abstract
Plastic pollution poses a significant threat to both ecosystems and human health, as fragments of microscale size are daily inhaled and ingested. Such tiny specks are defined as microplastics (MPs), and although their presence as environmental contaminants is ubiquitous in the world, their possible effects at biological and physiological levels are still not clear. To explore the potential impacts of MP exposure, we produced and characterized polyethylene terephthalate (PET) micro-fragments, then administered them to living cells. PET is widely employed in the production of plastic bottles, and thus represents a potential source of environmental MPs. However, its potential effects on public health are hardly investigated, as the current bio-medical research on MPs mainly utilizes different models, such as polystyrene particles. This study employed cell viability assays and Western blot analysis to demonstrate cell-dependent and dose-dependent cytotoxic effects of PET MPs, as well as a significant impact on HER-2-driven signaling pathways. Our findings provide insight into the biological effects of MP exposure, particularly for a widely used but poorly investigated material such as PET.File | Dimensione | Formato | |
---|---|---|---|
Toxicology in Vitro, 2023 vol. 91 art. n. 105632.pdf
accesso aperto
Tipologia:
Versione Editoriale
Licenza:
PUBBLICO - Creative Commons
Dimensione
2.84 MB
Formato
Adobe PDF
|
2.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.