Coronary artery calcification (CAC) is a measure of atherosclerosis and a well-established predictor of coronary artery disease (CAD) events. Here we describe a genome-wide association study of CAC in 22,400 participants from multiple ancestral groups. We confirmed associations with four known loci and identified two additional loci associated with CAC (ARSE and MMP16), with evidence of significant associations in replication analyses for both novel loci. Functional assays of ARSE and MMP16 in human vascular smooth muscle cells (VSMCs) demonstrate that ARSE is a promoter of VSMC calcification and VSMC phenotype switching from a contractile to a calcifying or osteogenic phenotype. Furthermore, we show that the association of variants near ARSE with reduced CAC is likely explained by reduced ARSE expression with the G allele of enhancer variant rs5982944. Our study highlights ARSE as an important contributor to atherosclerotic vascular calcification and a potential drug target for vascular calcific disease.de Vries, Conomos, Singh and Nicholson et al. identify two additional loci associated with coronary artery calcification (ARSE and MMP16) via a genome-wide association study in 22,400 participants from multiple ancestral groups and prove that ARSE is a mediator of vascular smooth muscle cell calcification and phenotype switching.

Whole-genome sequencing uncovers two loci for coronary artery calcification and identifies ARSE as a regulator of vascular calcification

Napolioni, Valerio;
2023-01-01

Abstract

Coronary artery calcification (CAC) is a measure of atherosclerosis and a well-established predictor of coronary artery disease (CAD) events. Here we describe a genome-wide association study of CAC in 22,400 participants from multiple ancestral groups. We confirmed associations with four known loci and identified two additional loci associated with CAC (ARSE and MMP16), with evidence of significant associations in replication analyses for both novel loci. Functional assays of ARSE and MMP16 in human vascular smooth muscle cells (VSMCs) demonstrate that ARSE is a promoter of VSMC calcification and VSMC phenotype switching from a contractile to a calcifying or osteogenic phenotype. Furthermore, we show that the association of variants near ARSE with reduced CAC is likely explained by reduced ARSE expression with the G allele of enhancer variant rs5982944. Our study highlights ARSE as an important contributor to atherosclerotic vascular calcification and a potential drug target for vascular calcific disease.de Vries, Conomos, Singh and Nicholson et al. identify two additional loci associated with coronary artery calcification (ARSE and MMP16) via a genome-wide association study in 22,400 participants from multiple ancestral groups and prove that ARSE is a mediator of vascular smooth muscle cell calcification and phenotype switching.
2023
262
File in questo prodotto:
File Dimensione Formato  
NAT_CARDIOVASC_RES.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.15 MB
Formato Adobe PDF
5.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Author manuscript available in PMC 2024 May 30.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 4.48 MB
Formato Adobe PDF
4.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/479063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact