This study aimed to improve postharvest management of flat oysters reared in a longline system in the mid Adriatic Sea, using short-term storage and package in an innovative closed-circuit system. For the trial, 870 oysters were employed, divided into three experimental groups (A, B, and C), N = 270 oysters each group, whereas the remaining 60 oysters were used for the 2 controls. Each group differed in relation to the time spent in the depuration tank and the time of packaging: group A was packed and immediately transferred to the cell; group B was depurated in a tank for 48 h, then packed and transferred to the cell; group C was depurated in a tank for 48 h and then packed, depurated for another 24 h and transferred to a cell. Samples of each group were sampled at different times of permanence in cell (t0) up until 12 days (t12) for biomorphometric, sensorial, nutritional, and microbiological analysis. Although the nutritional and sensorial quality of the oysters was more pronounced in group A, B and C groups also showed good results. In these two groups, thanks to the use of the modern water recirculation system the quality and safety of oysters was improved by reducing the presence of sludge and eliminating fecal contaminants completely than A treatment and seawater control. These results were also confirmed by the tank control, where a more extended depuration period positively influenced the same parameters emphasizing the importance of the adequate depuration processes in oyster production

Strategies to improve the postharvest management of flat oyster (Ostrea edulis) from aquaculture using the short-term storage and package in an innovative closed-circuit system

Felici, A.;Galosi, L.
;
Roncarati, A
Ultimo
2024-01-01

Abstract

This study aimed to improve postharvest management of flat oysters reared in a longline system in the mid Adriatic Sea, using short-term storage and package in an innovative closed-circuit system. For the trial, 870 oysters were employed, divided into three experimental groups (A, B, and C), N = 270 oysters each group, whereas the remaining 60 oysters were used for the 2 controls. Each group differed in relation to the time spent in the depuration tank and the time of packaging: group A was packed and immediately transferred to the cell; group B was depurated in a tank for 48 h, then packed and transferred to the cell; group C was depurated in a tank for 48 h and then packed, depurated for another 24 h and transferred to a cell. Samples of each group were sampled at different times of permanence in cell (t0) up until 12 days (t12) for biomorphometric, sensorial, nutritional, and microbiological analysis. Although the nutritional and sensorial quality of the oysters was more pronounced in group A, B and C groups also showed good results. In these two groups, thanks to the use of the modern water recirculation system the quality and safety of oysters was improved by reducing the presence of sludge and eliminating fecal contaminants completely than A treatment and seawater control. These results were also confirmed by the tank control, where a more extended depuration period positively influenced the same parameters emphasizing the importance of the adequate depuration processes in oyster production
2024
File in questo prodotto:
File Dimensione Formato  
Journal of Food Science - 2023 - Rusco - Strategies to improve the postharvest management of flat oyster Ostrea edulis .pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: PUBBLICO - Creative Commons
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/478204
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact