We apply advanced methods of control theory to open quantum systems and we determine finite-time processes which are optimal with respect to thermodynamic performances. General properties and necessary conditions characterizing optimal drivings are derived, obtaining bang-bang-type solutions corresponding to control strategies switching between adiabatic and isothermal transformations. A direct application of these results is the maximization of the work produced by a generic quantum heat engine, where we show that the maximum power is directly linked to a particular conserved quantity naturally emerging from the control problem. Finally we apply our general approach to the specific case of a two-level system, which can be put in contact with two different baths at fixed temperatures, identifying the processes that minimize heat dissipation. Moreover, we explicitly solve the optimization problem for a cyclic two-level heat engine driven beyond the linear-response regime, determining the corresponding optimal cycle, the maximum power, and the efficiency at maximum power.
Optimal thermodynamic control in open quantum systems
Mari A.Secondo
;
2018-01-01
Abstract
We apply advanced methods of control theory to open quantum systems and we determine finite-time processes which are optimal with respect to thermodynamic performances. General properties and necessary conditions characterizing optimal drivings are derived, obtaining bang-bang-type solutions corresponding to control strategies switching between adiabatic and isothermal transformations. A direct application of these results is the maximization of the work produced by a generic quantum heat engine, where we show that the maximum power is directly linked to a particular conserved quantity naturally emerging from the control problem. Finally we apply our general approach to the specific case of a two-level system, which can be put in contact with two different baths at fixed temperatures, identifying the processes that minimize heat dissipation. Moreover, we explicitly solve the optimization problem for a cyclic two-level heat engine driven beyond the linear-response regime, determining the corresponding optimal cycle, the maximum power, and the efficiency at maximum power.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.