According to the second law of thermodynamics, for every transformation performed on a system which is in contact with an environment of fixed temperature, the average extracted work is bounded by the decrease of the free energy of the system. However, in a single realization of a generic process, the extracted work is subject to statistical fluctuations which may allow for probabilistic violations of the previous bound. We are interested in enhancing this effect, i.e. we look for thermodynamic processes that maximize the probability of extracting work above a given arbitrary threshold. For any process obeying the Jarzynski identity, we determine an upper bound for the work extraction probability that depends also on the minimum amount of work that we are willing to extract in case of failure, or on the average work we wish to extract from the system. Then we show that this bound can be saturated within the thermodynamic formalism of quantum discrete processes composed by sequences of unitary quenches and complete thermalizations. We explicitly determine the optimal protocol which is given by two quasi-static isothermal transformations separated by a finite unitary quench.

Optimal processes for probabilistic work extraction beyond the second law

Mari A.
Secondo
;
2016-01-01

Abstract

According to the second law of thermodynamics, for every transformation performed on a system which is in contact with an environment of fixed temperature, the average extracted work is bounded by the decrease of the free energy of the system. However, in a single realization of a generic process, the extracted work is subject to statistical fluctuations which may allow for probabilistic violations of the previous bound. We are interested in enhancing this effect, i.e. we look for thermodynamic processes that maximize the probability of extracting work above a given arbitrary threshold. For any process obeying the Jarzynski identity, we determine an upper bound for the work extraction probability that depends also on the minimum amount of work that we are willing to extract in case of failure, or on the average work we wish to extract from the system. Then we show that this bound can be saturated within the thermodynamic formalism of quantum discrete processes composed by sequences of unitary quenches and complete thermalizations. We explicitly determine the optimal protocol which is given by two quasi-static isothermal transformations separated by a finite unitary quench.
2016
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/475336
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact