We introduce the idea of actually cooling quantum systems by means of incoherent thermal light, hence giving rise to a counterintuitive mechanism of "cooling by heating." In this effect, the mere incoherent occupation of a quantum mechanical mode serves as a trigger to enhance the coupling between other modes. This notion of effectively rendering states more coherent by driving with incoherent thermal quantum noise is applied here to the optomechanical setting, where this effect occurs most naturally. We discuss two ways of describing this situation, one of them making use of stochastic sampling of Gaussian quantum states with respect to stationary classical stochastic processes. The potential of experimentally demonstrating this counterintuitive effect in optomechanical systems with present technology is sketched. © 2012 American Physical Society.
Cooling by heating: Very hot thermal light can significantly cool quantum systems
Mari A.Primo
;
2012-01-01
Abstract
We introduce the idea of actually cooling quantum systems by means of incoherent thermal light, hence giving rise to a counterintuitive mechanism of "cooling by heating." In this effect, the mere incoherent occupation of a quantum mechanical mode serves as a trigger to enhance the coupling between other modes. This notion of effectively rendering states more coherent by driving with incoherent thermal quantum noise is applied here to the optomechanical setting, where this effect occurs most naturally. We discuss two ways of describing this situation, one of them making use of stochastic sampling of Gaussian quantum states with respect to stationary classical stochastic processes. The potential of experimentally demonstrating this counterintuitive effect in optomechanical systems with present technology is sketched. © 2012 American Physical Society.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.