This work introduces a new two-dimensional (2D) borophene-based (BB) supercapacitor produced by a chemical vapor deposition method and used in the facile fabrication of nanosupercapacitors (spin-coating on graphite substrates). Structural properties of the as-prepared borophene sheets are fully characterized via AFM, HRTEM, and FESEM, and Raman spectrum of the 2D sheets is scrutinized and discussed, as well as the electrochemical response of the fabricated nanosupercapacitors. A high specific capacity (sCap) of 350 F g(-1) is attributed to the device according to the electrochemical tests, that is almost three times higher than previous boron-based supercapacitors and surpasses the best reported 2D materials including graphene. Based on the surface charge-storage mechanism, it is posited that the electrical conductivity and surface area of 2D electrode materials highly affect the performance of the supercapacitor. Simulation studies are also conducted using joint density-functional theory (JDFT), the results of which are in agreement with the reported outcomes of experiments. Application of the newly synthesized 2D BB supercapacitors in the current study is expected to be promising in the energy storage field, inventive class of sensing devices, as well as novel highly sensitive biosensors.

A Two-Dimensional Borophene Supercapacitor

Rezvani, SJ;Di Cicco, A;
2022-01-01

Abstract

This work introduces a new two-dimensional (2D) borophene-based (BB) supercapacitor produced by a chemical vapor deposition method and used in the facile fabrication of nanosupercapacitors (spin-coating on graphite substrates). Structural properties of the as-prepared borophene sheets are fully characterized via AFM, HRTEM, and FESEM, and Raman spectrum of the 2D sheets is scrutinized and discussed, as well as the electrochemical response of the fabricated nanosupercapacitors. A high specific capacity (sCap) of 350 F g(-1) is attributed to the device according to the electrochemical tests, that is almost three times higher than previous boron-based supercapacitors and surpasses the best reported 2D materials including graphene. Based on the surface charge-storage mechanism, it is posited that the electrical conductivity and surface area of 2D electrode materials highly affect the performance of the supercapacitor. Simulation studies are also conducted using joint density-functional theory (JDFT), the results of which are in agreement with the reported outcomes of experiments. Application of the newly synthesized 2D BB supercapacitors in the current study is expected to be promising in the energy storage field, inventive class of sensing devices, as well as novel highly sensitive biosensors.
2022
File in questo prodotto:
File Dimensione Formato  
ACSMatL_4_1929_2022.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.36 MB
Formato Adobe PDF
5.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/474263
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact