We investigate the evaporation of an uncharged and nonrotating black hole in vacuum by taking into account the effects given by the shrinking of the horizon area. These include the backreaction on the metric and other smaller contributions arising from quantum fields in curved spacetime. Our approach is facilitated by the use of an analog accelerating moving mirror. We study the consequences of this modified evaporation on the black hole entropy. Insights are provided on the amount of information obtained from a black hole by considering nonequilibrium thermodynamics and the nonthermal part of Hawking radiation.

Modeling black hole evaporative mass evolution via radiation from moving mirrors

Orlando Luongo;Stefano Mancini
2023-01-01

Abstract

We investigate the evaporation of an uncharged and nonrotating black hole in vacuum by taking into account the effects given by the shrinking of the horizon area. These include the backreaction on the metric and other smaller contributions arising from quantum fields in curved spacetime. Our approach is facilitated by the use of an analog accelerating moving mirror. We study the consequences of this modified evaporation on the black hole entropy. Insights are provided on the amount of information obtained from a black hole by considering nonequilibrium thermodynamics and the nonthermal part of Hawking radiation.
2023
File in questo prodotto:
File Dimensione Formato  
PRD_107_104004.pdf

solo gestori di archivio

Descrizione: PDF
Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 422.59 kB
Formato Adobe PDF
422.59 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2210.09744.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 615.14 kB
Formato Adobe PDF
615.14 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/473025
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact