Research on solid precipitation and snow cover, especially in mountainous areas, suffers from problems related to the lack of on-site observations and the low reliability of measurements, which is often due to instruments that are not suitable for the environmental conditions. In this context, the study area is the Monti Sibillini National Park, and it is no exception, as it is a mountainous area located in central Italy, where the measurements are scarce and fragmented. The purpose of this research is to provide a characterization of the snow cover with regard to maximum annual snow depth, average snow depth during the snowy period, and days with snow cover on the ground in the Monti Sibillini National Park area, by means of ground weather stations, and also analyzing any trends over the last 30 years. For this research, in order to obtain reliable snow cover data, only data from weather stations equipped with a sonar system and manual weather stations, where the surveyor goes to the site each morning and checks the thickness of the snowpack and records, it were collected. The data were collected from 1 November to 30 April each year for 30 years, from 1991 to 2020; six weather stations were taken into account, while four more were added as of 1 January 2010. The longer period was used to assess possible ongoing trends, which proved to be very heterogeneous in the results, predominantly negative in the case of days with snow cover on the ground, while trends were predominantly positive for maximum annual snow depth and distributed between positive and negative for the average annual snow depth. The shorter period, 2010–2022, on the other hand, ensured the presence of a larger number of weather stations and was used to assess the correlation and presence of clusters between the various weather stations and, consequently, in the study area. Furthermore, in this way, an up-to-date nivometric classification of the study area was obtained (in terms of days with snow on the ground, maximum height of snowpack, and average height of snowpack), filling a gap where there had been no nivometric study in the aforementioned area. The interpolations were processed using geostatistical techniques such as co-kriging with altitude as an independent variable, allowing fairly precise spatialization, analyzing the results of cross-validation. This analysis could be a useful tool for hydrological modeling of the area, as well as having a clear use related to tourism and vegetation, which is extremely influenced by the nivometric variables in its phenology. In addition, this analysis could also be considered a starting point for the calibration of more recent satellite products dedicated to snow cover detection, in order to further improve the compiled climate characterization
Analysis of Snow Cover in the Sibillini Mountains in Central Italy
Gentilucci M.
Primo
;Catorci A.;Panichella T.;Pambianchi, G.
2023-01-01
Abstract
Research on solid precipitation and snow cover, especially in mountainous areas, suffers from problems related to the lack of on-site observations and the low reliability of measurements, which is often due to instruments that are not suitable for the environmental conditions. In this context, the study area is the Monti Sibillini National Park, and it is no exception, as it is a mountainous area located in central Italy, where the measurements are scarce and fragmented. The purpose of this research is to provide a characterization of the snow cover with regard to maximum annual snow depth, average snow depth during the snowy period, and days with snow cover on the ground in the Monti Sibillini National Park area, by means of ground weather stations, and also analyzing any trends over the last 30 years. For this research, in order to obtain reliable snow cover data, only data from weather stations equipped with a sonar system and manual weather stations, where the surveyor goes to the site each morning and checks the thickness of the snowpack and records, it were collected. The data were collected from 1 November to 30 April each year for 30 years, from 1991 to 2020; six weather stations were taken into account, while four more were added as of 1 January 2010. The longer period was used to assess possible ongoing trends, which proved to be very heterogeneous in the results, predominantly negative in the case of days with snow cover on the ground, while trends were predominantly positive for maximum annual snow depth and distributed between positive and negative for the average annual snow depth. The shorter period, 2010–2022, on the other hand, ensured the presence of a larger number of weather stations and was used to assess the correlation and presence of clusters between the various weather stations and, consequently, in the study area. Furthermore, in this way, an up-to-date nivometric classification of the study area was obtained (in terms of days with snow on the ground, maximum height of snowpack, and average height of snowpack), filling a gap where there had been no nivometric study in the aforementioned area. The interpolations were processed using geostatistical techniques such as co-kriging with altitude as an independent variable, allowing fairly precise spatialization, analyzing the results of cross-validation. This analysis could be a useful tool for hydrological modeling of the area, as well as having a clear use related to tourism and vegetation, which is extremely influenced by the nivometric variables in its phenology. In addition, this analysis could also be considered a starting point for the calibration of more recent satellite products dedicated to snow cover detection, in order to further improve the compiled climate characterizationFile | Dimensione | Formato | |
---|---|---|---|
climate-11-00072.pdf
accesso aperto
Tipologia:
Versione Editoriale
Licenza:
PUBBLICO - Creative Commons
Dimensione
2.74 MB
Formato
Adobe PDF
|
2.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.