We study the non-autonomous variational problem: \begin{equation*} \inf_{(\phi,\theta)} \bigg\{\int_0^1 \bigg(\frac{k}{2}\phi'^2 + \frac{(\phi-\theta)^2}{2}-V(x,\theta)\bigg)\text{d}x\bigg\} \end{equation*} where $k>0$, $V$ is a bounded continuous function, $(\phi,\theta)\in H^1([0,1])\times L^2([0,1])$ and $\phi(0)=0$. The peculiarity of the problem is its setting in the product of spaces of different regularity order. Problems with this form arise in elastostatics, when studying the equilibria of a nonlinear Timoshenko beam under distributed load, and in classical dynamics of coupled particles in time-depending external fields. We prove the existence and qualitative properties of global minimizers and study, under additional assumptions on $V$, the existence and regularity of local minimizers.

A non-autonomous variational problem describing a nonlinear Timoshenko beam

Corona, D
;
DELLA Corte, A
;
Giannoni, F
2023-01-01

Abstract

We study the non-autonomous variational problem: \begin{equation*} \inf_{(\phi,\theta)} \bigg\{\int_0^1 \bigg(\frac{k}{2}\phi'^2 + \frac{(\phi-\theta)^2}{2}-V(x,\theta)\bigg)\text{d}x\bigg\} \end{equation*} where $k>0$, $V$ is a bounded continuous function, $(\phi,\theta)\in H^1([0,1])\times L^2([0,1])$ and $\phi(0)=0$. The peculiarity of the problem is its setting in the product of spaces of different regularity order. Problems with this form arise in elastostatics, when studying the equilibria of a nonlinear Timoshenko beam under distributed load, and in classical dynamics of coupled particles in time-depending external fields. We prove the existence and qualitative properties of global minimizers and study, under additional assumptions on $V$, the existence and regularity of local minimizers.
2023
262
File in questo prodotto:
File Dimensione Formato  
arXiv 2204.07455v1 [math.AP] 15 Apr 2022.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: PUBBLICO - Creative Commons
Dimensione 931.95 kB
Formato Adobe PDF
931.95 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/471606
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact