Membrane vesicles (MVs) are spherical particles with nanoscale dimensions and characterized by the presence of diverse cargos, such as nucleic acids, proteins, lipids, and cellular metabolites. Many examples of (micro)organisms producing MVs are reported in literature. Among them, bacterial MVs are of particular interest because they are now considered as the fourth mechanism of horizontal gene transfer. Streptomyces bacteria are well-known for their ecological roles and ability to synthesize bioactive compounds, with Streptomyces coelicolor being the model organism. It was previously demonstrated that it can produce distinct populations of MVs characterized by different protein and metabolite cargos. In this work we demonstrated for the first time that MVs of S. coelicolor carry both DNA and RNA and that their DNA content represents the entire chromosome of the bacterium. These findings suggest that MV DNA could have a role in the evolution of Streptomyces genomes and that MVs could be exploited in new strain engineering strategies.

Unravelling the DNA sequences carried by Streptomyces coelicolor membrane vesicles

Vassallo A.
Secondo
;
2022-01-01

Abstract

Membrane vesicles (MVs) are spherical particles with nanoscale dimensions and characterized by the presence of diverse cargos, such as nucleic acids, proteins, lipids, and cellular metabolites. Many examples of (micro)organisms producing MVs are reported in literature. Among them, bacterial MVs are of particular interest because they are now considered as the fourth mechanism of horizontal gene transfer. Streptomyces bacteria are well-known for their ecological roles and ability to synthesize bioactive compounds, with Streptomyces coelicolor being the model organism. It was previously demonstrated that it can produce distinct populations of MVs characterized by different protein and metabolite cargos. In this work we demonstrated for the first time that MVs of S. coelicolor carry both DNA and RNA and that their DNA content represents the entire chromosome of the bacterium. These findings suggest that MV DNA could have a role in the evolution of Streptomyces genomes and that MVs could be exploited in new strain engineering strategies.
2022
File in questo prodotto:
File Dimensione Formato  
Vassallo et al., Scientific Reports volume 12, Article number 16651 (2022).pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: PUBBLICO - Creative Commons
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/471086
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact