We study the measurable dynamical properties of the interval map generated by the model-case erasing substitution rho, defined by rho (00) = empty word, rho (01) = 1, rho (10) = 0, rho (11) = 01. We prove that, although the map is singular, its square preserves the Lebesgue measure and is strongly mixing, thus ergodic, with respect to it. We discuss the extension of the results to more general erasing maps.

Mixing properties of erasing interval maps

Corona, D
;
Della Corte, A
2024-01-01

Abstract

We study the measurable dynamical properties of the interval map generated by the model-case erasing substitution rho, defined by rho (00) = empty word, rho (01) = 1, rho (10) = 0, rho (11) = 01. We prove that, although the map is singular, its square preserves the Lebesgue measure and is strongly mixing, thus ergodic, with respect to it. We discuss the extension of the results to more general erasing maps.
2024
262
File in questo prodotto:
File Dimensione Formato  
2023c-CoronaDellaCorte-ETDS.pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: DRM non definito
Dimensione 829.24 kB
Formato Adobe PDF
829.24 kB Adobe PDF Visualizza/Apri
Paper_Meas_Eras.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 539.54 kB
Formato Adobe PDF
539.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/470754
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact