We study the measurable dynamical properties of the interval map generated by the model-case erasing substitution rho, defined by rho (00) = empty word, rho (01) = 1, rho (10) = 0, rho (11) = 01. We prove that, although the map is singular, its square preserves the Lebesgue measure and is strongly mixing, thus ergodic, with respect to it. We discuss the extension of the results to more general erasing maps.

Mixing properties of erasing interval maps

Corona, D
;
Della Corte, A
2024-01-01

Abstract

We study the measurable dynamical properties of the interval map generated by the model-case erasing substitution rho, defined by rho (00) = empty word, rho (01) = 1, rho (10) = 0, rho (11) = 01. We prove that, although the map is singular, its square preserves the Lebesgue measure and is strongly mixing, thus ergodic, with respect to it. We discuss the extension of the results to more general erasing maps.
2024
262
File in questo prodotto:
File Dimensione Formato  
Paper_Meas_Eras.pdf

solo gestori di archivio

Tipologia: Documento in Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 469.93 kB
Formato Adobe PDF
469.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/470754
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact