We study the measurable dynamical properties of the interval map generated by the model-case erasing substitution rho, defined by rho (00) = empty word, rho (01) = 1, rho (10) = 0, rho (11) = 01. We prove that, although the map is singular, its square preserves the Lebesgue measure and is strongly mixing, thus ergodic, with respect to it. We discuss the extension of the results to more general erasing maps.
Mixing properties of erasing interval maps
Corona, D
;Della Corte, A
2024-01-01
Abstract
We study the measurable dynamical properties of the interval map generated by the model-case erasing substitution rho, defined by rho (00) = empty word, rho (01) = 1, rho (10) = 0, rho (11) = 01. We prove that, although the map is singular, its square preserves the Lebesgue measure and is strongly mixing, thus ergodic, with respect to it. We discuss the extension of the results to more general erasing maps.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Paper_Meas_Eras.pdf
solo gestori di archivio
Tipologia:
Documento in Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
469.93 kB
Formato
Adobe PDF
|
469.93 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.