A layered LiNi0.2Co0.2Al0.1Mn0.45O2 cathode is herein synthetized and investigated. Scanning electron micro- scopy (SEM) shows the layered morphology of the composite powder, while energy dispersive X-ray spectroscopy (EDS) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) confirm the achieved stoichiometry. X-ray diffraction (XRD) well identifies the layered structure unit cell, and Raman spectroscopy displays the corre- sponding M-O bonds motions. The cycling voltammetry (CV) of LiNi0.2Co0.2Al0.1Mn0.45O2 in lithium half-cell reveals an electrochemical process characterized by a remarkable irreversible oxidation taking place at 4.6 V vs. Li+/Li during the first scan, and subsequent reversible Li (de)intercalation centered at 3.8 V vs. Li+/Li with interphase resistance limited to 16 Ω upon activation as indicated by electrochemical impedance spectroscopy (EIS). The relevant irreversibility during first charge is also detected by galvanostatic cycling in a lithium half-cell subsequently operating at an average voltage of 3.8 V with a stable trend, and a maximum specific capacity of 130 mAh g− 1. The initial irreversible capacity of the layered cathode is advantageously exploited for compen- sating the pristine inefficiency of the Li-alloying composite anode in a proof-of-concept Li-ion battery achieved by combining the LiNi0.2Co0.2Al0.1Mn0.45O2 with a silicon oxide composite (SiOx-C) without any preliminary pre- treatment of the electrodes. The full-cell displays a cycling behavior strongly influenced by the anode/cathode ratio, and the corresponding EIS performed both on the single electrodes and on the Li-ion cell by using an additional lithium reference suggests a controlling role of the anode interphase and possible enhancements through a slight excess of cathode material.

Reciprocal irreversibility compensation of LiNi0.2Co0.2Al0.1Mn0.45O2 cathode and silicon oxide anode in new Li-ion battery

Minnetti, L;Nobili, F;
2023-01-01

Abstract

A layered LiNi0.2Co0.2Al0.1Mn0.45O2 cathode is herein synthetized and investigated. Scanning electron micro- scopy (SEM) shows the layered morphology of the composite powder, while energy dispersive X-ray spectroscopy (EDS) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) confirm the achieved stoichiometry. X-ray diffraction (XRD) well identifies the layered structure unit cell, and Raman spectroscopy displays the corre- sponding M-O bonds motions. The cycling voltammetry (CV) of LiNi0.2Co0.2Al0.1Mn0.45O2 in lithium half-cell reveals an electrochemical process characterized by a remarkable irreversible oxidation taking place at 4.6 V vs. Li+/Li during the first scan, and subsequent reversible Li (de)intercalation centered at 3.8 V vs. Li+/Li with interphase resistance limited to 16 Ω upon activation as indicated by electrochemical impedance spectroscopy (EIS). The relevant irreversibility during first charge is also detected by galvanostatic cycling in a lithium half-cell subsequently operating at an average voltage of 3.8 V with a stable trend, and a maximum specific capacity of 130 mAh g− 1. The initial irreversible capacity of the layered cathode is advantageously exploited for compen- sating the pristine inefficiency of the Li-alloying composite anode in a proof-of-concept Li-ion battery achieved by combining the LiNi0.2Co0.2Al0.1Mn0.45O2 with a silicon oxide composite (SiOx-C) without any preliminary pre- treatment of the electrodes. The full-cell displays a cycling behavior strongly influenced by the anode/cathode ratio, and the corresponding EIS performed both on the single electrodes and on the Li-ion cell by using an additional lithium reference suggests a controlling role of the anode interphase and possible enhancements through a slight excess of cathode material.
2023
262
File in questo prodotto:
File Dimensione Formato  
Electrochimica acta PreProof 2023.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 2.84 MB
Formato Adobe PDF
2.84 MB Adobe PDF Visualizza/Apri
Nobili et al., Electrochimica Acta 452 (2023) 142263.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.04 MB
Formato Adobe PDF
4.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/470475
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact