Background: Insufficient sleep is a serious public health problem in modern society. It leads to increased risk of chronic diseases, and it has been frequently associated with cellular oxidative damage and widespread low-grade inflammation. Probiotics have been attracting increasing interest recently for their antioxidant and anti-inflammatory properties. Here, we tested the ability of probiotics to contrast oxidative stress and inflammation induced by sleep loss. Methods: We administered a multi-strain probiotic formulation (SLAB51) or water to normal sleeping mice and to mice exposed to 7 days of chronic sleep restriction (CSR). We quantified protein, lipid, and DNA oxidation as well as levels of gut-brain axis hormones and pro and anti-inflammatory cytokines in the brain and plasma. Furthermore, we carried out an evaluation of microglia morphology and density in the mouse cerebral cortex. Results: We found that CSR induced oxidative stress and inflammation and altered gut-brain axis hormones. SLAB51 oral administration boosted the antioxidant capacity of the brain, thus limiting the oxidative damage provoked by loss of sleep. Moreover, it positively regulated gut-brain axis hormones and reduced peripheral and brain inflammation induced by CSR. Conclusions: Probiotic supplementation can be a possible strategy to counteract oxidative stress and inflammation promoted by sleep loss.

Probiotics Supplementation Attenuates Inflammation and Oxidative Stress Induced by Chronic Sleep Restriction

Bonfili, L;de Vivo, L;Eleuteri, AM
;
Bellesi, M
2023-01-01

Abstract

Background: Insufficient sleep is a serious public health problem in modern society. It leads to increased risk of chronic diseases, and it has been frequently associated with cellular oxidative damage and widespread low-grade inflammation. Probiotics have been attracting increasing interest recently for their antioxidant and anti-inflammatory properties. Here, we tested the ability of probiotics to contrast oxidative stress and inflammation induced by sleep loss. Methods: We administered a multi-strain probiotic formulation (SLAB51) or water to normal sleeping mice and to mice exposed to 7 days of chronic sleep restriction (CSR). We quantified protein, lipid, and DNA oxidation as well as levels of gut-brain axis hormones and pro and anti-inflammatory cytokines in the brain and plasma. Furthermore, we carried out an evaluation of microglia morphology and density in the mouse cerebral cortex. Results: We found that CSR induced oxidative stress and inflammation and altered gut-brain axis hormones. SLAB51 oral administration boosted the antioxidant capacity of the brain, thus limiting the oxidative damage provoked by loss of sleep. Moreover, it positively regulated gut-brain axis hormones and reduced peripheral and brain inflammation induced by CSR. Conclusions: Probiotic supplementation can be a possible strategy to counteract oxidative stress and inflammation promoted by sleep loss.
2023
262
File in questo prodotto:
File Dimensione Formato  
2023 Nutrients.pdf

accesso aperto

Descrizione: articolo
Tipologia: Versione Editoriale
Licenza: PUBBLICO - Creative Commons
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/470414
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact