Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
We report results of a search for an isotropic gravitational-wave
background (GWB) using data from Advanced LIGO's and Advanced Virgo's
third observing run (O3) combined with upper limits from the earlier O1
and O2 runs. Unlike in previous observing runs in the advanced detector
era, we include Virgo in the search for the GWB. The results of the
search are consistent with uncorrelated noise, and therefore we place
upper limits on the strength of the GWB. We find that the dimensionless
energy density Omega(GW) <= 5.8 x 10(-9) at the 95\% credible level for
a flat (frequency-independent) GWB, using a prior which is uniform in
the log of the strength of the GWB, with 99\% of the sensitivity coming
from the band 20-76.6 Hz; Omega(GW)(f) <= 3.4 x 10(-9) at 25 Hz for a
power-law GWB with a spectral index of 2/3 (consistent with expectations
for compact binary coalescences), in the band 20-90.6 Hz; and
Omega(GW)(f) <= 3.9 x 10(-10) at 25 Hz for a spectral index of 3, in the
band 20-291.6 Hz. These upper limits improve over our previous results
by a factor of 6.0 for a flat GWB, 8.8 for a spectral index of 2/3, and
13.1 for a spectral index of 3. We also search for a GWB arising from
scalar and vector modes, which are predicted by alternative theories of
gravity; we do not find evidence of these, and place upper limits on the
strength of GWBs with these polarizations. We demonstrate that there is
no evidence of correlated noise of magnetic origin by performing a
Bayesian analysis that allows for the presence of both a GWB and an
effective magnetic background arising from geophysical Schumann
resonances. We compare our upper limits to a fiducial model for the GWB
from the merger of compact binaries, updating the model to use the most
recent data-driven population inference from the systems detected during
O3a. Finally, we combine our results with observations of individual
mergers and show that, at design sensitivity, this joint approach may
yield stronger constraints on the merger rate of binary black holes at z
greater than or similar to 2 than can be achieved with individually
resolved mergers alone.
Upper limits on the isotropic gravitational-wave background from
Advanced LIGO and Advanced Virgo's third observing run
We report results of a search for an isotropic gravitational-wave
background (GWB) using data from Advanced LIGO's and Advanced Virgo's
third observing run (O3) combined with upper limits from the earlier O1
and O2 runs. Unlike in previous observing runs in the advanced detector
era, we include Virgo in the search for the GWB. The results of the
search are consistent with uncorrelated noise, and therefore we place
upper limits on the strength of the GWB. We find that the dimensionless
energy density Omega(GW) <= 5.8 x 10(-9) at the 95\% credible level for
a flat (frequency-independent) GWB, using a prior which is uniform in
the log of the strength of the GWB, with 99\% of the sensitivity coming
from the band 20-76.6 Hz; Omega(GW)(f) <= 3.4 x 10(-9) at 25 Hz for a
power-law GWB with a spectral index of 2/3 (consistent with expectations
for compact binary coalescences), in the band 20-90.6 Hz; and
Omega(GW)(f) <= 3.9 x 10(-10) at 25 Hz for a spectral index of 3, in the
band 20-291.6 Hz. These upper limits improve over our previous results
by a factor of 6.0 for a flat GWB, 8.8 for a spectral index of 2/3, and
13.1 for a spectral index of 3. We also search for a GWB arising from
scalar and vector modes, which are predicted by alternative theories of
gravity; we do not find evidence of these, and place upper limits on the
strength of GWBs with these polarizations. We demonstrate that there is
no evidence of correlated noise of magnetic origin by performing a
Bayesian analysis that allows for the presence of both a GWB and an
effective magnetic background arising from geophysical Schumann
resonances. We compare our upper limits to a fiducial model for the GWB
from the merger of compact binaries, updating the model to use the most
recent data-driven population inference from the systems detected during
O3a. Finally, we combine our results with observations of individual
mergers and show that, at design sensitivity, this joint approach may
yield stronger constraints on the merger rate of binary black holes at z
greater than or similar to 2 than can be achieved with individually
resolved mergers alone.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/469295
Citazioni
ND
272
193
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.