Recently, microwave-assisted hydrodistillation (MAH) has been reported as an innovative technique leading to increased essential oil (EO) extraction yield, coupled with reduced extraction time and energy costs. The EO of Carlina acaulis L. (Asteraceae), mainly constituted by carlina oxide (>95%) and conventionally obtained through traditional hydrodistillation (HD), has been reported as extremely effective against several arthropod vectors and pests of medical and economic importance with limited impact on non-target species, including mammals. This study aimed to the optimization of the EO extraction through MAH by using a one-step design of experiments (DoE) approach that allowed us to relate the characteristics of the produced EOs with the applied experimental conditions using mathematical models. The preliminary screening allowed us to optimize the protocol only by the extraction time, skipping complex data analysis. Moreover, the comparison of the optimized MAH conditions with traditional HD pointed out the higher efficiency of MAH in terms of EO yield (0.65 and 0.49% for MAH and HD, respectively) and extraction time (210 min for MAH). The results obtained confirmed the promising role that MAH could have in C. acaulis EO extraction, with increased yield and reduced extraction time, water consumption, and energy costs, and being employable on an industrial scale, with special reference to insecticidal and acaricidal formulations.

Microwave-Assisted Hydrodistillation of the Insecticidal Essential Oil from Carlina acaulis: A Fractional Factorial Design Optimization Study

Eleonora Spinozzi
Primo
;
Marta Ferrati
Secondo
;
Riccardo Petrelli;Filippo Maggi
Penultimo
;
Marco Cespi
2023-01-01

Abstract

Recently, microwave-assisted hydrodistillation (MAH) has been reported as an innovative technique leading to increased essential oil (EO) extraction yield, coupled with reduced extraction time and energy costs. The EO of Carlina acaulis L. (Asteraceae), mainly constituted by carlina oxide (>95%) and conventionally obtained through traditional hydrodistillation (HD), has been reported as extremely effective against several arthropod vectors and pests of medical and economic importance with limited impact on non-target species, including mammals. This study aimed to the optimization of the EO extraction through MAH by using a one-step design of experiments (DoE) approach that allowed us to relate the characteristics of the produced EOs with the applied experimental conditions using mathematical models. The preliminary screening allowed us to optimize the protocol only by the extraction time, skipping complex data analysis. Moreover, the comparison of the optimized MAH conditions with traditional HD pointed out the higher efficiency of MAH in terms of EO yield (0.65 and 0.49% for MAH and HD, respectively) and extraction time (210 min for MAH). The results obtained confirmed the promising role that MAH could have in C. acaulis EO extraction, with increased yield and reduced extraction time, water consumption, and energy costs, and being employable on an industrial scale, with special reference to insecticidal and acaricidal formulations.
2023
262
File in questo prodotto:
File Dimensione Formato  
plants-12-00622.pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: PUBBLICO - Creative Commons
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/469114
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact