The reuse of waste water (WW) in agriculture is challenging as a potential strategy for sustainable agriculture development. However, its high content of heavy metals may cause damage to ecosystems. The property of biochar (BC) to minimize heavy metals accumulation into the soil was studied taking as a case study peppermint (Mentha x piperita L., Lamiaceae) irrigated with WW. Application of BC and WW, separately, promoted height, shoot number, crown diameter, internode length, leaf number, leaf length, leaf width, fresh (FW) and dry aerial parts weights (DW), root FW and root DW of peppermint. Also an increment in canopy diameter was observed. BC application considerably increased N, Mg, Mn, Fe and Zn, while WW increased N, P, K and Fe levels. Irrigation of peppermint with WW led to an increase of chlorophyll (Chl) a, Chl b, Chl a+b, carotenoids, anthocyanins, photosynthetic rate, transpiration, stomatal conductance, relative water content (RWC), and crop yield. On the other hand, BC application led to a decrease of Cd and Pb accumulation in plants. BC and WW application, separately, increased the essential oil content, the total phenol content, and the antioxidant capacity. Regardless of BC levels, irrigation of plants with WW decreased the percentage of menthone, menthofuran, isomenthone and pulegone in the essential oil, and increased the percentage of menthol and carvone. Similarly, BC application raised the percentage of menthol, and decreased that of pulegone. Overall, the application of BC in the culture medium is able to decrease the heavy metal concentration and improves the essential oil quality and quantity of peppermint under WW irrigation.
Biochar amendment improves growth and the essential oil quality and quantity of peppermint (Mentha × piperita L.) grown under waste water and reduce environmental contamination of waste water disposal
F. MaggiPenultimo
;
2023-01-01
Abstract
The reuse of waste water (WW) in agriculture is challenging as a potential strategy for sustainable agriculture development. However, its high content of heavy metals may cause damage to ecosystems. The property of biochar (BC) to minimize heavy metals accumulation into the soil was studied taking as a case study peppermint (Mentha x piperita L., Lamiaceae) irrigated with WW. Application of BC and WW, separately, promoted height, shoot number, crown diameter, internode length, leaf number, leaf length, leaf width, fresh (FW) and dry aerial parts weights (DW), root FW and root DW of peppermint. Also an increment in canopy diameter was observed. BC application considerably increased N, Mg, Mn, Fe and Zn, while WW increased N, P, K and Fe levels. Irrigation of peppermint with WW led to an increase of chlorophyll (Chl) a, Chl b, Chl a+b, carotenoids, anthocyanins, photosynthetic rate, transpiration, stomatal conductance, relative water content (RWC), and crop yield. On the other hand, BC application led to a decrease of Cd and Pb accumulation in plants. BC and WW application, separately, increased the essential oil content, the total phenol content, and the antioxidant capacity. Regardless of BC levels, irrigation of plants with WW decreased the percentage of menthone, menthofuran, isomenthone and pulegone in the essential oil, and increased the percentage of menthol and carvone. Similarly, BC application raised the percentage of menthol, and decreased that of pulegone. Overall, the application of BC in the culture medium is able to decrease the heavy metal concentration and improves the essential oil quality and quantity of peppermint under WW irrigation.File | Dimensione | Formato | |
---|---|---|---|
Journal of Hazardous Materials, 2023 vol. 446 art. n. 130674.pdf
solo gestori di archivio
Tipologia:
Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.