This paper reports on results of nonlinear analyses performed within the RINTC project on an RC building isolated with different systems (High Damping Rubber Bearings, High Damping Rubber Bearings and Flat Sliding Bearings, Friction Pendulum System) and designed according to the Italian design code. The seismic response has been evaluated under different seismic input levels of two sites with different hazard and by considering two Limit States: Global Collapse and Usability-Preventing Damage. The influence of seismic stoppers and modelling uncertainties is also evaluated. Results permit to compute the implicit collapse risk and to identify critical aspects of current design procedures.

Modelling and Seismic Response Analysis of Italian Code-Conforming Base-Isolated Buildings

Andrea Dall’Asta;F. Micozzi;
2018-01-01

Abstract

This paper reports on results of nonlinear analyses performed within the RINTC project on an RC building isolated with different systems (High Damping Rubber Bearings, High Damping Rubber Bearings and Flat Sliding Bearings, Friction Pendulum System) and designed according to the Italian design code. The seismic response has been evaluated under different seismic input levels of two sites with different hazard and by considering two Limit States: Global Collapse and Usability-Preventing Damage. The influence of seismic stoppers and modelling uncertainties is also evaluated. Results permit to compute the implicit collapse risk and to identify critical aspects of current design procedures.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/467559
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 32
social impact