Approximately 5 million people die from diseases related to nicotine addiction and tobacco use each year. The nicotine-induced increase of corticomesolimbic dopaminergic (DAergic) transmission and hypodopaminergic conditions occurring during abstinence are important for maintaining drug-use habits. We examined the notion of reequilibrating DAergic transmission by inhibiting phosphodiesterase 7 (PDE7), an intracellular enzyme highly expressed in the corticomesolimbic circuitry and responsible for the degradation of cyclic adenosine monophosphate (cAMP), the main second messenger modulated by DA receptor activation. Using selective PDE7 inhibitors, we demonstrated in male rats that systemic PDE7 enzyme inhibition reduced nicotine self-administration and prevented reinstatement to nicotine seeking evoked by cues or by the pharmacological stressor yohimbine. The effect was also observed by direct application of the PDE7 inhibitors into the nucleus accumbens (NAc) shell but not into the core. Inhibition of PDE7 resulted in increased DA- and cAMP-regulated neuronal phosphoprotein and cAMP response element-binding protein and their phosphorylated forms in the NAc. It also enhanced the DA D1 receptor agonism-mediated effects, indicating potentiation of protein kinase A–dependent transmission downstream of D1 receptor activation. In electrophysiological recordings from DA neurons in the lateral posterior ventral tegmental area, the PDE7 inhibitors attenuated the spontaneous activity of DA neurons. This effect was exerted through the potentiation of D1 receptor signaling and the subsequent facilitation of c-aminobutyric acid transmission. The PDE7 inhibitors did not elicit conditioned place preference and did not induce intravenous self-administration, indicating lack of reinforcing properties. Thus, PDE7 inhibitors have the potential to treat nicotine abuse.

Selective inhibition of phosphodiesterase 7 enzymes reduces motivation for nicotine use through modulation of mesolimbic dopaminergic transmission

Ciccocioppo R.
Primo
;
De Guglielmo G.;Shen Q.;Domi A.;Fumagalli F.;
2021-01-01

Abstract

Approximately 5 million people die from diseases related to nicotine addiction and tobacco use each year. The nicotine-induced increase of corticomesolimbic dopaminergic (DAergic) transmission and hypodopaminergic conditions occurring during abstinence are important for maintaining drug-use habits. We examined the notion of reequilibrating DAergic transmission by inhibiting phosphodiesterase 7 (PDE7), an intracellular enzyme highly expressed in the corticomesolimbic circuitry and responsible for the degradation of cyclic adenosine monophosphate (cAMP), the main second messenger modulated by DA receptor activation. Using selective PDE7 inhibitors, we demonstrated in male rats that systemic PDE7 enzyme inhibition reduced nicotine self-administration and prevented reinstatement to nicotine seeking evoked by cues or by the pharmacological stressor yohimbine. The effect was also observed by direct application of the PDE7 inhibitors into the nucleus accumbens (NAc) shell but not into the core. Inhibition of PDE7 resulted in increased DA- and cAMP-regulated neuronal phosphoprotein and cAMP response element-binding protein and their phosphorylated forms in the NAc. It also enhanced the DA D1 receptor agonism-mediated effects, indicating potentiation of protein kinase A–dependent transmission downstream of D1 receptor activation. In electrophysiological recordings from DA neurons in the lateral posterior ventral tegmental area, the PDE7 inhibitors attenuated the spontaneous activity of DA neurons. This effect was exerted through the potentiation of D1 receptor signaling and the subsequent facilitation of c-aminobutyric acid transmission. The PDE7 inhibitors did not elicit conditioned place preference and did not induce intravenous self-administration, indicating lack of reinforcing properties. Thus, PDE7 inhibitors have the potential to treat nicotine abuse.
2021
262
File in questo prodotto:
File Dimensione Formato  
Ciccocioppo et al., The Journal of Neuroscience, 2021 vol. 41(28) pp. 6128–6143.pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: PUBBLICO - Creative Commons
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/461986
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact