Because they deliver outstanding energy density, next-generation lithium metal batteries (LMBs) are essential to the advancement of both electric mobility and portable electronic devices. However, the high reactivity of metallic lithium surfaces leads to the low electrochemical performance of many secondary batteries. Besides, Li deposition is not uniform, which has been attributed to the low ionic conductivity of the anode surface. In particular, lithium exposure to CO2 gas is considered detrimental due to the formation of carbonate on the solid electrolyte interphase (SEI). In this work, we explored the interaction of Li metal with CO2 gas as a function of time using ambient pressure X-ray photoelectron spectroscopy to clarify the reaction pathway and main intermediates involved in the process during which oxalate formation has been detected. Furthermore, when O2 gas is part of the surrounding environment with CO2 gas, the reaction pathway is bypassed to directly promote carbonate as a single product.

Revealing in Situ Li Metal Anode Surface Evolution upon Exposure to CO2 Using Ambient Pressure X-Ray Photoelectron Spectroscopy

Munoz-Marquez M. A.
;
2020-01-01

Abstract

Because they deliver outstanding energy density, next-generation lithium metal batteries (LMBs) are essential to the advancement of both electric mobility and portable electronic devices. However, the high reactivity of metallic lithium surfaces leads to the low electrochemical performance of many secondary batteries. Besides, Li deposition is not uniform, which has been attributed to the low ionic conductivity of the anode surface. In particular, lithium exposure to CO2 gas is considered detrimental due to the formation of carbonate on the solid electrolyte interphase (SEI). In this work, we explored the interaction of Li metal with CO2 gas as a function of time using ambient pressure X-ray photoelectron spectroscopy to clarify the reaction pathway and main intermediates involved in the process during which oxalate formation has been detected. Furthermore, when O2 gas is part of the surrounding environment with CO2 gas, the reaction pathway is bypassed to directly promote carbonate as a single product.
2020
File in questo prodotto:
File Dimensione Formato  
ACS Appl. Mater. Interfaces 2020, 12, 23, pp. 26607–26613.pdf

solo gestori di archivio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.86 MB
Formato Adobe PDF
2.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/461720
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact