Inflammation is the preceding condition for the development of mild and severe pathological conditions, including various forms of osteopenia, cancer, metabolic syndromes, neurological disorders, atherosclerosis, cardiovascular, lung diseases, etc., in human and animals. The inflammatory status is induced by multifarious intracellular signaling cascades, where cytokines, chemokines, arachidonic acid metabolites, adhesion molecules, immune cells and other components foster a "slow burn" at a local or systemic level. Assuming that countering inflammation limits the development of inflammation-based diseases, a series of new side-effects-free therapies was assessed in experimental and domestic animals. Within the targets of the drug candidates for quenching inflammation, an archetypal autophagic gear, the p62/sqstm1 protein, has currently earned attention from researchers. Intracellular p62 has been recently coined as a multi-task tool associated with autophagy, bone remodeling, bone marrow integrity, cancer progression, and the maintenance of systemic homeostasis. Accordingly, p62 can act as an effective suppressor of inflamm-aging, reducing oxidative stress and proinflammatory signals. Such an operational schedule renders this protein an effective watchdog for degenerative diseases and cancer development in laboratory and pet animals. This review summarizes the current findings concerning p62 activities as a molecular hub for cell and tissues metabolism and in a variety of inflammatory diseases and other pathological conditions. It also specifically addresses the applications of exogenous p62 (DNA plasmid) as an anti-inflammatory and homeostatic regulator in the treatment of osteoporosis, metabolic syndrome, age-related macular degeneration and cancer in animals, and the possible application of p62 plasmid in other inflammation-associated diseases.

P62/SQSTM1 beyond Autophagy: Physiological Role and Therapeutic Applications in Laboratory and Domestic Animals

Sabbieti, Maria Giovanna
Primo
;
Marchegiani, Andrea;Agas, Dimitrios
Ultimo
2022-01-01

Abstract

Inflammation is the preceding condition for the development of mild and severe pathological conditions, including various forms of osteopenia, cancer, metabolic syndromes, neurological disorders, atherosclerosis, cardiovascular, lung diseases, etc., in human and animals. The inflammatory status is induced by multifarious intracellular signaling cascades, where cytokines, chemokines, arachidonic acid metabolites, adhesion molecules, immune cells and other components foster a "slow burn" at a local or systemic level. Assuming that countering inflammation limits the development of inflammation-based diseases, a series of new side-effects-free therapies was assessed in experimental and domestic animals. Within the targets of the drug candidates for quenching inflammation, an archetypal autophagic gear, the p62/sqstm1 protein, has currently earned attention from researchers. Intracellular p62 has been recently coined as a multi-task tool associated with autophagy, bone remodeling, bone marrow integrity, cancer progression, and the maintenance of systemic homeostasis. Accordingly, p62 can act as an effective suppressor of inflamm-aging, reducing oxidative stress and proinflammatory signals. Such an operational schedule renders this protein an effective watchdog for degenerative diseases and cancer development in laboratory and pet animals. This review summarizes the current findings concerning p62 activities as a molecular hub for cell and tissues metabolism and in a variety of inflammatory diseases and other pathological conditions. It also specifically addresses the applications of exogenous p62 (DNA plasmid) as an anti-inflammatory and homeostatic regulator in the treatment of osteoporosis, metabolic syndrome, age-related macular degeneration and cancer in animals, and the possible application of p62 plasmid in other inflammation-associated diseases.
2022
File in questo prodotto:
File Dimensione Formato  
life-12-00539 (2022).pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: PUBBLICO - Creative Commons
Dimensione 1.9 MB
Formato Adobe PDF
1.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/461344
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact