Cobalt-free spinel LiNi0.5Mn1.5O4 is one of the most promising and environmentally friendly cathodes, based on its high specific theoretical capacity (147 mAh·g–1) and high electrochemical potential (4.7 V vs Li+/Li), as well as good electronic and Li-ion conductivities. In this work, we present the fabrication of LiNi0.5Mn1.5O4 thin-film cathodes deposited by the industrially scalable AC magnetron sputtering technique on functional and cost-effective stainless steel current collectors. This is the first step toward battery downscaling, envisioning the fabrication of compact microbatteries for low-power energy supply. The thin-film strategy is crucial also for solid electrolyte fabrication that will allow the integration of high-energy-density batteries while overcoming most of the current battery challenges. In this work, the effect of film thickness on the material’s electrochemical performance is discussed, correlating the observed structural and morphological evolution with the final electrochemical response. Moreover, the effect of iron diffusion from the current collector substrate into the cathode film is analyzed. The addition of a stable CrN barrier layer in between the substrate and the film is proposed to prevent Fe diffusion, with a direct positive influence on the electrochemical behavior. All in all, the obtained results will facilitate the practical implementation of LiNi0.5Mn1.5O4 thin films as high-voltage cathodes in functional cost-effective microbatteries.

Growth Parameters and Diffusion Barriers for Functional High-Voltage Thin-Film Batteries Based on Spinel LiNi0.5Mn1.5O4 Cathodes

Munoz-Marquez M. A.
Ultimo
2022-01-01

Abstract

Cobalt-free spinel LiNi0.5Mn1.5O4 is one of the most promising and environmentally friendly cathodes, based on its high specific theoretical capacity (147 mAh·g–1) and high electrochemical potential (4.7 V vs Li+/Li), as well as good electronic and Li-ion conductivities. In this work, we present the fabrication of LiNi0.5Mn1.5O4 thin-film cathodes deposited by the industrially scalable AC magnetron sputtering technique on functional and cost-effective stainless steel current collectors. This is the first step toward battery downscaling, envisioning the fabrication of compact microbatteries for low-power energy supply. The thin-film strategy is crucial also for solid electrolyte fabrication that will allow the integration of high-energy-density batteries while overcoming most of the current battery challenges. In this work, the effect of film thickness on the material’s electrochemical performance is discussed, correlating the observed structural and morphological evolution with the final electrochemical response. Moreover, the effect of iron diffusion from the current collector substrate into the cathode film is analyzed. The addition of a stable CrN barrier layer in between the substrate and the film is proposed to prevent Fe diffusion, with a direct positive influence on the electrochemical behavior. All in all, the obtained results will facilitate the practical implementation of LiNi0.5Mn1.5O4 thin films as high-voltage cathodes in functional cost-effective microbatteries.
2022
File in questo prodotto:
File Dimensione Formato  
ACS Appl. Mater. Interfaces 2022, 14, 2720−2730.pdf

solo gestori di archivio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.77 MB
Formato Adobe PDF
5.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/459893
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact