Although gas exsolution is a major driving force behind explosive volcanic eruptions, viscosity is critical in controlling the escape of bubbles and switching between explosive and effusive behavior. Temperature and composition control melt viscosity, but crystallization above a critical volume (>30 volume %) can lock up the magma, triggering an explosion. Here, we present an alternative to this well-established paradigm by showing how an unexpectedly small volume of nano-sized crystals can cause a disproportionate increase in magma viscosity. Our in situ observations on a basaltic melt, rheological measurements in an analog system, and modeling demonstrate how just a few volume % of nanolites results in a marked increase in viscosity above the critical value needed for explosive fragmentation, even for a low-viscosity melt. Images of nanolites from low-viscosity explosive eruptions and an experimentally produced basaltic pumice show syn-eruptive growth, possibly nucleating a high bubble number density.

In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions

Arzilli F.;
2020-01-01

Abstract

Although gas exsolution is a major driving force behind explosive volcanic eruptions, viscosity is critical in controlling the escape of bubbles and switching between explosive and effusive behavior. Temperature and composition control melt viscosity, but crystallization above a critical volume (>30 volume %) can lock up the magma, triggering an explosion. Here, we present an alternative to this well-established paradigm by showing how an unexpectedly small volume of nano-sized crystals can cause a disproportionate increase in magma viscosity. Our in situ observations on a basaltic melt, rheological measurements in an analog system, and modeling demonstrate how just a few volume % of nanolites results in a marked increase in viscosity above the critical value needed for explosive fragmentation, even for a low-viscosity melt. Images of nanolites from low-viscosity explosive eruptions and an experimentally produced basaltic pumice show syn-eruptive growth, possibly nucleating a high bubble number density.
2020
File in questo prodotto:
File Dimensione Formato  
Di Genova et al 2020.pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: PUBBLICO - Creative Commons
Dimensione 2.41 MB
Formato Adobe PDF
2.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/457986
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 59
social impact