New compounds with a 7-amino-2-arylmethyl-thiazolo[5,4-d]pyrimidine structure were synthesized and evaluated in vitro for their affinity and/or potency at the human (h) A1, hA2A, hA2B, and hA3 adenosine receptors (ARs). Several compounds (5, 8–10, 13, 18–19) were characterized by nanomolar and subnanomolar binding affinities for the hA1 and the hA2A AR, respectively. Results of molecular docking studies supported the in vitro results. The 2-(2-fluorobenzyl)-5-(furan-2yl)-thiazolo[5,4-d]pyrimidin-7-amine derivative 18 (hA1 Ki = 1.9 nM; hA2A Ki = 0.06 nM) was evaluated for its antidepressant-like activity in in vivo studies, the forced swimming test (FST), the tail suspension test (TST), and the sucrose preference test (SPT) in mice, showing an effect comparable to that of the reference amitriptyline.

Design and synthesis of novel thiazolo[5,4-d]pyrimidine derivatives with high affinity for both the adenosine a1 and a2a receptors, and efficacy in animal models of depression

Dal Ben D.;Buccioni M.;Marucci G.;Volpini R.;
2021-01-01

Abstract

New compounds with a 7-amino-2-arylmethyl-thiazolo[5,4-d]pyrimidine structure were synthesized and evaluated in vitro for their affinity and/or potency at the human (h) A1, hA2A, hA2B, and hA3 adenosine receptors (ARs). Several compounds (5, 8–10, 13, 18–19) were characterized by nanomolar and subnanomolar binding affinities for the hA1 and the hA2A AR, respectively. Results of molecular docking studies supported the in vitro results. The 2-(2-fluorobenzyl)-5-(furan-2yl)-thiazolo[5,4-d]pyrimidin-7-amine derivative 18 (hA1 Ki = 1.9 nM; hA2A Ki = 0.06 nM) was evaluated for its antidepressant-like activity in in vivo studies, the forced swimming test (FST), the tail suspension test (TST), and the sucrose preference test (SPT) in mice, showing an effect comparable to that of the reference amitriptyline.
File in questo prodotto:
File Dimensione Formato  
Pharmaceuticals 2021, 14, art. n. 657.pdf

accesso aperto

Descrizione: versione finale - open access
Tipologia: Versione Editoriale
Licenza: DRM non definito
Dimensione 276.32 kB
Formato Adobe PDF
276.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/457278
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
social impact