The catalytic activity of commercial carbon-supported PtFe (PtFe/C) nanoparticles admixed with mesoporous polyoxometalate Cs3H3PMo9V3O40, (POM3-3–9), has been evaluated towards oxygen reduction reaction (ORR) in acid medium. The polyoxometalate cesium salt co-catalyst/co-support has been prepared by titration using the aqueous solution of phosphovanadomolibdic acid. The synthesized material has been characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results confirm formation of the polyoxometalate salt with the characteristic Keggin-type structure. The composite catalyst has been prepared by mixing the POM3-3–9 sample with the commercial PtFe/C by sonication. The diagnostic rotating ring-disk voltammetric studies are consistent with good performance of the system with low Pt loading during ORR. The fuel cell membrane electrode assembly (MEA) utilizing the PtFe/POM-based cathode has exhibited comparable or better performance (at relative humidity on the level of 100, 62, and 17%), in comparison to the commercial MEA with higher Pt loading at the cathode. Furthermore, based on the cell potential and power density polarization curves, noticeable improvements in the fuel cell behavior have been observed at the low relative humidity (17%). Finally, the accelerated stress test, which uses the potential square wave between 0.4 V and 0.8 V, has been performed to evaluate MEA stability for at least 100 h. It has been demonstrated that, after initial losses, the proposed catalytic system seems to retain stable performance and good morphological rigidity.

Activation of bimetallic PtFe nanoparticles with zeolite-type cesium salts of vanadium-substituted polyoxometallates toward electroreduction of oxygen at low Pt loadings for fuel cells

Nobili, F;
2021-01-01

Abstract

The catalytic activity of commercial carbon-supported PtFe (PtFe/C) nanoparticles admixed with mesoporous polyoxometalate Cs3H3PMo9V3O40, (POM3-3–9), has been evaluated towards oxygen reduction reaction (ORR) in acid medium. The polyoxometalate cesium salt co-catalyst/co-support has been prepared by titration using the aqueous solution of phosphovanadomolibdic acid. The synthesized material has been characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results confirm formation of the polyoxometalate salt with the characteristic Keggin-type structure. The composite catalyst has been prepared by mixing the POM3-3–9 sample with the commercial PtFe/C by sonication. The diagnostic rotating ring-disk voltammetric studies are consistent with good performance of the system with low Pt loading during ORR. The fuel cell membrane electrode assembly (MEA) utilizing the PtFe/POM-based cathode has exhibited comparable or better performance (at relative humidity on the level of 100, 62, and 17%), in comparison to the commercial MEA with higher Pt loading at the cathode. Furthermore, based on the cell potential and power density polarization curves, noticeable improvements in the fuel cell behavior have been observed at the low relative humidity (17%). Finally, the accelerated stress test, which uses the potential square wave between 0.4 V and 0.8 V, has been performed to evaluate MEA stability for at least 100 h. It has been demonstrated that, after initial losses, the proposed catalytic system seems to retain stable performance and good morphological rigidity.
2021
262
File in questo prodotto:
File Dimensione Formato  
Renzi2021_Article_ActivationOfBimetallicPtFeNano.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Licenza: PUBBLICO - Creative Commons
Dimensione 3.32 MB
Formato Adobe PDF
3.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/455158
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact