To characterize entanglement of tripartite systems, we employ algebraic-geometric tools that are invariants under stochastic local operation and classical communication, namely -secant varieties and one-multilinear ranks. Indeed, by means of them, we present a classification of tripartite pure states in terms of a finite number of families and subfamilies. At the core of it stands out a fine-structure grouping of three-qutrit entanglement.
Algebraic-geometric characterization of tripartite entanglement
Mancini, S
2021-01-01
Abstract
To characterize entanglement of tripartite systems, we employ algebraic-geometric tools that are invariants under stochastic local operation and classical communication, namely -secant varieties and one-multilinear ranks. Indeed, by means of them, we present a classification of tripartite pure states in terms of a finite number of families and subfamilies. At the core of it stands out a fine-structure grouping of three-qutrit entanglement.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
PHYSREVA104.pdf
solo gestori di archivio
Descrizione: PDF
Tipologia:
Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
517.71 kB
Formato
Adobe PDF
|
517.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2106.14891.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
547.11 kB
Formato
Adobe PDF
|
547.11 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.