To characterize entanglement of tripartite systems, we employ algebraic-geometric tools that are invariants under stochastic local operation and classical communication, namely -secant varieties and one-multilinear ranks. Indeed, by means of them, we present a classification of tripartite pure states in terms of a finite number of families and subfamilies. At the core of it stands out a fine-structure grouping of three-qutrit entanglement.

Algebraic-geometric characterization of tripartite entanglement

Mancini, S
2021-01-01

Abstract

To characterize entanglement of tripartite systems, we employ algebraic-geometric tools that are invariants under stochastic local operation and classical communication, namely -secant varieties and one-multilinear ranks. Indeed, by means of them, we present a classification of tripartite pure states in terms of a finite number of families and subfamilies. At the core of it stands out a fine-structure grouping of three-qutrit entanglement.
2021
262
File in questo prodotto:
File Dimensione Formato  
PHYSREVA104.pdf

solo gestori di archivio

Descrizione: PDF
Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 517.71 kB
Formato Adobe PDF
517.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2106.14891.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 547.11 kB
Formato Adobe PDF
547.11 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/454652
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact