We investigate the dynamics of two identical artificial active particles suspended in a free-standing fluid film with a trap of finite radius in an acoustic tweezer. In the two dimensional Oseen approximation, their hydrodynamic coupling is long ranged, which naturally raises the question as under what conditions they can simultaneously reside in the trap. We determine a critical value of the hydrodynamic coupling below which that happens and study the ensuing active pair dynamics inside the trap. For larger couplings, only one particle sits in the trap, while the other diffuses freely until it eventually replaces the particle in the trap. Such a mechanism repeats itself with a characteristic noise-dependent mean residence-retrapping time
Active microswimmers in a finite two dimensional trap: The role of hydrodynamic interaction
Marchesoni, Fabio
2019-01-01
Abstract
We investigate the dynamics of two identical artificial active particles suspended in a free-standing fluid film with a trap of finite radius in an acoustic tweezer. In the two dimensional Oseen approximation, their hydrodynamic coupling is long ranged, which naturally raises the question as under what conditions they can simultaneously reside in the trap. We determine a critical value of the hydrodynamic coupling below which that happens and study the ensuing active pair dynamics inside the trap. For larger couplings, only one particle sits in the trap, while the other diffuses freely until it eventually replaces the particle in the trap. Such a mechanism repeats itself with a characteristic noise-dependent mean residence-retrapping timeFile | Dimensione | Formato | |
---|---|---|---|
1.5038149.pdf
solo gestori di archivio
Tipologia:
Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.63 MB
Formato
Adobe PDF
|
1.63 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.