In this paper, the benzo-cracking approach was applied to the potent sigma1 (σ1) receptor antagonist 1 to afford the less conformationally constrained 1,3-dioxane derivatives 2 and 3. To evaluate the effect of the increase in the distance between the two hydrophobic structural elements that flank the basic function, the cis and trans diastereomers of 4 and 5 were also prepared and studied. Compounds 2 and 3 showed affinity values at the σ1 receptor significantly higher than that of the lead compound 1. In particular, 3 displayed unprecedented selectivity over the σ2 receptor, the phencyclidine site of the NMDA receptor, and opioid receptor subtypes, as well as over the dopamine transporter. Docking results supported the structure-activity relationship studies. Due to its interesting biological profile, derivative 3, selected for an in vivo study in a validated preclinical model of binge eating, was able to counteract the overeating of palatable food only in binging rats, without affecting palatable food intake in the control group and anxiety-like and depression-related behaviors in female rats. This result strengthened the involvement of the σ1 receptor in the compulsive-like eating behavior and supported the σ1 receptor as a promising target for the management of eating disorders.

Novel highly potent and selective sigma1 receptor antagonists effectively block the binge eating episode in female rats

Cifani C;Micioni Di Bonaventura E;Botticelli L;Del Bello F
;
Giorgioni G;Piergentili A;Quaglia W
;
Micioni Di Bonaventura MV.
2020-01-01

Abstract

In this paper, the benzo-cracking approach was applied to the potent sigma1 (σ1) receptor antagonist 1 to afford the less conformationally constrained 1,3-dioxane derivatives 2 and 3. To evaluate the effect of the increase in the distance between the two hydrophobic structural elements that flank the basic function, the cis and trans diastereomers of 4 and 5 were also prepared and studied. Compounds 2 and 3 showed affinity values at the σ1 receptor significantly higher than that of the lead compound 1. In particular, 3 displayed unprecedented selectivity over the σ2 receptor, the phencyclidine site of the NMDA receptor, and opioid receptor subtypes, as well as over the dopamine transporter. Docking results supported the structure-activity relationship studies. Due to its interesting biological profile, derivative 3, selected for an in vivo study in a validated preclinical model of binge eating, was able to counteract the overeating of palatable food only in binging rats, without affecting palatable food intake in the control group and anxiety-like and depression-related behaviors in female rats. This result strengthened the involvement of the σ1 receptor in the compulsive-like eating behavior and supported the σ1 receptor as a promising target for the management of eating disorders.
2020
File in questo prodotto:
File Dimensione Formato  
ACS Chem. Neurosci. 2020, 11, 3107−3116.pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: PUBBLICO - Creative Commons
Dimensione 4.21 MB
Formato Adobe PDF
4.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/447410
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact