Supervised machine learning is emerging as a powerful computational tool to predict the properties of complex quantum systems at a limited computational cost. In this article, we quantify how accurately deep neural networks can learn the properties of disordered quantum systems as a function of the system size. We implement a scalable convolutional network that can address arbitrary system sizes. This network is compared with a recently introduced extensive convolutional architecture [Mills, Chem. Sci. 10, 4129 (2019)2041-652010.1039/C8SC04578J] and with conventional dense networks with all-to-all connectivity. The networks are trained to predict the exact ground-state energies of various disordered systems, namely, a continuous-space single-particle Hamiltonian for cold-atoms in speckle disorder, and different setups of a quantum Ising chain with random couplings, including one with only short-range interactions and one augmented with a long-range term. In all testbeds we consider, the scalable network retains high accuracy as the system size increases. Furthermore, we demonstrate that the network scalability enables a transfer-learning protocol, whereby a pretraining performed on small systems drastically accelerates the learning of large-system properties, allowing reaching high accuracy with small training sets. In fact, with the scalable network one can even extrapolate to sizes larger than those included in the training set, accurately reproducing the results of state-of-the-art quantum Monte Carlo simulations.
Scalable neural networks for the efficient learning of disordered quantum systems
Pilati, S
2020-01-01
Abstract
Supervised machine learning is emerging as a powerful computational tool to predict the properties of complex quantum systems at a limited computational cost. In this article, we quantify how accurately deep neural networks can learn the properties of disordered quantum systems as a function of the system size. We implement a scalable convolutional network that can address arbitrary system sizes. This network is compared with a recently introduced extensive convolutional architecture [Mills, Chem. Sci. 10, 4129 (2019)2041-652010.1039/C8SC04578J] and with conventional dense networks with all-to-all connectivity. The networks are trained to predict the exact ground-state energies of various disordered systems, namely, a continuous-space single-particle Hamiltonian for cold-atoms in speckle disorder, and different setups of a quantum Ising chain with random couplings, including one with only short-range interactions and one augmented with a long-range term. In all testbeds we consider, the scalable network retains high accuracy as the system size increases. Furthermore, we demonstrate that the network scalability enables a transfer-learning protocol, whereby a pretraining performed on small systems drastically accelerates the learning of large-system properties, allowing reaching high accuracy with small training sets. In fact, with the scalable network one can even extrapolate to sizes larger than those included in the training set, accurately reproducing the results of state-of-the-art quantum Monte Carlo simulations.File | Dimensione | Formato | |
---|---|---|---|
PhysRevE.102.033301.pdf
solo gestori di archivio
Tipologia:
Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
994.21 kB
Formato
Adobe PDF
|
994.21 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Scalable neural networks for the efficient learning of disordered quantum systems _ Pre print.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
678.36 kB
Formato
Adobe PDF
|
678.36 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.