Supervised machine learning is emerging as a powerful computational tool to predict the properties of complex quantum systems at a limited computational cost. In this article, we quantify how accurately deep neural networks can learn the properties of disordered quantum systems as a function of the system size. We implement a scalable convolutional network that can address arbitrary system sizes. This network is compared with a recently introduced extensive convolutional architecture [Mills, Chem. Sci. 10, 4129 (2019)2041-652010.1039/C8SC04578J] and with conventional dense networks with all-to-all connectivity. The networks are trained to predict the exact ground-state energies of various disordered systems, namely, a continuous-space single-particle Hamiltonian for cold-atoms in speckle disorder, and different setups of a quantum Ising chain with random couplings, including one with only short-range interactions and one augmented with a long-range term. In all testbeds we consider, the scalable network retains high accuracy as the system size increases. Furthermore, we demonstrate that the network scalability enables a transfer-learning protocol, whereby a pretraining performed on small systems drastically accelerates the learning of large-system properties, allowing reaching high accuracy with small training sets. In fact, with the scalable network one can even extrapolate to sizes larger than those included in the training set, accurately reproducing the results of state-of-the-art quantum Monte Carlo simulations.

Scalable neural networks for the efficient learning of disordered quantum systems

Pilati S.
2020-01-01

Abstract

Supervised machine learning is emerging as a powerful computational tool to predict the properties of complex quantum systems at a limited computational cost. In this article, we quantify how accurately deep neural networks can learn the properties of disordered quantum systems as a function of the system size. We implement a scalable convolutional network that can address arbitrary system sizes. This network is compared with a recently introduced extensive convolutional architecture [Mills, Chem. Sci. 10, 4129 (2019)2041-652010.1039/C8SC04578J] and with conventional dense networks with all-to-all connectivity. The networks are trained to predict the exact ground-state energies of various disordered systems, namely, a continuous-space single-particle Hamiltonian for cold-atoms in speckle disorder, and different setups of a quantum Ising chain with random couplings, including one with only short-range interactions and one augmented with a long-range term. In all testbeds we consider, the scalable network retains high accuracy as the system size increases. Furthermore, we demonstrate that the network scalability enables a transfer-learning protocol, whereby a pretraining performed on small systems drastically accelerates the learning of large-system properties, allowing reaching high accuracy with small training sets. In fact, with the scalable network one can even extrapolate to sizes larger than those included in the training set, accurately reproducing the results of state-of-the-art quantum Monte Carlo simulations.
2020
262
File in questo prodotto:
File Dimensione Formato  
PhysRevE.102.033301.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 994.21 kB
Formato Adobe PDF
994.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Scalable neural networks for the efficient learning of disordered quantum systems _ Pre print.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 678.36 kB
Formato Adobe PDF
678.36 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/446288
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact