miR-223 is an anti-inflammatory miRNA that in cancer acts either as an oncosuppressor or oncopromoter, in a context-dependent manner. In breast cancer, we demonstrated that it dampens the activation of the EGF pathway. However, little is known on the role of miR-223 during breast cancer onset and progression. miR-223 expression was decreased in breast cancer of luminal and HER2 subtypes and inversely correlated with patients' prognosis. In normal luminal mammary epithelial cells, miR-223 acted cell autonomously in the control of their growth and morphology in three-dimensional context. In the MMTV-Δ16HER2 transgenic mouse model, oncogene transformation resulted in a timely abrogation of miR-223 expression, likely due to activation of E2F1, a known repressor of miR-223 transcription. Accordingly, treatment with CDK4/6 inhibitors, which eventually results in restraining E2F1 activity, restored miR-223 expression and miR-223 ablation induced luminal breast cancer resistance to CDK4/6 inhibition, both in vitro and in vivo. Notably, miR-223 expression was lost in microdissected ductal carcinoma in situ (DCIS) from patients with luminal and HER2-positive breast cancer. Altogether, these results identify downmodulation of miR-223 as an early step in luminal breast cancer onset and suggest that it could be used to identify aggressive DCIS and predict the response to targeted therapy. SIGNIFICANCE: miR-223 may represent a predictive biomarker of response to CDK4/6 inhibitors and its loss could identify DCIS lesions that are likely to progress into invasive breast cancer.

Downregulation of miR-223 Expression Is an Early Event during Mammary Transformation and Confers Resistance to CDK4/6 Inhibitors in Luminal Breast Cancer

Cristina Marchini;Augusto Amici;
2020-01-01

Abstract

miR-223 is an anti-inflammatory miRNA that in cancer acts either as an oncosuppressor or oncopromoter, in a context-dependent manner. In breast cancer, we demonstrated that it dampens the activation of the EGF pathway. However, little is known on the role of miR-223 during breast cancer onset and progression. miR-223 expression was decreased in breast cancer of luminal and HER2 subtypes and inversely correlated with patients' prognosis. In normal luminal mammary epithelial cells, miR-223 acted cell autonomously in the control of their growth and morphology in three-dimensional context. In the MMTV-Δ16HER2 transgenic mouse model, oncogene transformation resulted in a timely abrogation of miR-223 expression, likely due to activation of E2F1, a known repressor of miR-223 transcription. Accordingly, treatment with CDK4/6 inhibitors, which eventually results in restraining E2F1 activity, restored miR-223 expression and miR-223 ablation induced luminal breast cancer resistance to CDK4/6 inhibition, both in vitro and in vivo. Notably, miR-223 expression was lost in microdissected ductal carcinoma in situ (DCIS) from patients with luminal and HER2-positive breast cancer. Altogether, these results identify downmodulation of miR-223 as an early step in luminal breast cancer onset and suggest that it could be used to identify aggressive DCIS and predict the response to targeted therapy. SIGNIFICANCE: miR-223 may represent a predictive biomarker of response to CDK4/6 inhibitors and its loss could identify DCIS lesions that are likely to progress into invasive breast cancer.
2020
File in questo prodotto:
File Dimensione Formato  
miR223 Cancer Res 2020.pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: DRM non definito
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/446242
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 51
social impact