Predicting how biodiversity affects ecosystem functioning requires a multifaceted approach based on the partitioning of diversity into its taxonomic and functional facets and thus redundancy. Here, we investigated how species richness (S), functional diversity (FD) and functional redundancy (FR) are affected by forest structure. Sixty-eight abandoned coppice-with-standards plots were selected in two mountain areas of the Apennine chain. We performed linear models to quantify the influence of structural parameters on S, FD and FR of clonal traits. Each diversity facet was affected differently by structural parameters, suggesting a complex interweaving of processes that influence the understory layer. Namely, tree layer density influences S, the height of the standards affects the lateral spread and persistence of clonal growth organs, and diameter of standards affects the FD of the number of clonal offspring. Opposite relationships compared to FD was found for the FR, suggesting how clonal traits play a key role in species assemblage. The observation that structural parameters exert opposite impact on FR seems to indicate a counterbalance effect on ecosystem stability. Multifaceted approaches yield a better understanding of relationship between forest structure and understory, and this knowledge can be exploited to formulate indications for more sustainable management practices.
The Legacy of the Past Logging: How Forest Structure Affects Different Facets of Understory Plant Diversity in Abandoned Coppice Forests
Bricca, Alessandro;Chelli, Stefano;Canullo, Roberto;
2020-01-01
Abstract
Predicting how biodiversity affects ecosystem functioning requires a multifaceted approach based on the partitioning of diversity into its taxonomic and functional facets and thus redundancy. Here, we investigated how species richness (S), functional diversity (FD) and functional redundancy (FR) are affected by forest structure. Sixty-eight abandoned coppice-with-standards plots were selected in two mountain areas of the Apennine chain. We performed linear models to quantify the influence of structural parameters on S, FD and FR of clonal traits. Each diversity facet was affected differently by structural parameters, suggesting a complex interweaving of processes that influence the understory layer. Namely, tree layer density influences S, the height of the standards affects the lateral spread and persistence of clonal growth organs, and diameter of standards affects the FD of the number of clonal offspring. Opposite relationships compared to FD was found for the FR, suggesting how clonal traits play a key role in species assemblage. The observation that structural parameters exert opposite impact on FR seems to indicate a counterbalance effect on ecosystem stability. Multifaceted approaches yield a better understanding of relationship between forest structure and understory, and this knowledge can be exploited to formulate indications for more sustainable management practices.File | Dimensione | Formato | |
---|---|---|---|
2020 Bricca et al The Legacy of the Past Logging_ How Forest Structure Affects Different Facets of Understory Plant Diversity in Abandoned Coppice Forests.pdf
accesso aperto
Tipologia:
Versione Editoriale
Licenza:
PUBBLICO - Creative Commons
Dimensione
920.91 kB
Formato
Adobe PDF
|
920.91 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.