Although the use of probiotics in human and animal medicine is growing, their mode of action remains poorly understood. This study examined the effects of a multi-strain probiotic (SLAB51™) on the morphology and carbohydrate composition of mucins secreted by goblet cells of intestinal crypts in growing-finishing pigs. Sections of duodenum, caecum and colon from pigs fed for 12 weeks with an orally administered control basal diet (No-Pro) or one with a probiotic blend (Pro) were processed for microscopic analysis and stained with (1) haematoxylin-eosin for structural and morphometrical investigation; (2) conventional histochemistry (periodic acid-Schiff, Alcian Blue pH 2.5, high iron diamine staining) for neutral, acidic non-sulphated, and sulphated mucin analysis; and (3) FITC-labelled MAA-II and SNA lectins for α2,3- and α2,6-sialomucin identification. Compared with No-Pro samples, Pro samples displayed (1) increased goblet cell numbers in all investigated tract crypts; (2) an increase in acidic non-sulphomucins but a decrease in neutral, sulphated and α2,6-sialomucin-secreting goblet cells in the duodenum; (3) decreased crypt depth, an increase in α2,6-sialomucin secretory goblet cells, and a loss of goblet cell-secreting α2,3-sialomucins, which appeared on the apical surface of crypt fundus epithelial cells in the caecum; and (4) an increase in α2,6-sialomucin-producing goblet cells in the colon. Results suggest that treatment with SLAB51™ induces region-specific changes in the morphology and carbohydrate composition of mucins secreted along intestinal tracts of growing-finishing pigs. These changes could ameliorate the health status of the animals, which displayed higher growth performance and meat quality than controls (Tufarelli et al., 2017).

Effects of a probiotic on the morphology and mucin composition of pig intestine.

Giacomo Rossi;
2019-01-01

Abstract

Although the use of probiotics in human and animal medicine is growing, their mode of action remains poorly understood. This study examined the effects of a multi-strain probiotic (SLAB51™) on the morphology and carbohydrate composition of mucins secreted by goblet cells of intestinal crypts in growing-finishing pigs. Sections of duodenum, caecum and colon from pigs fed for 12 weeks with an orally administered control basal diet (No-Pro) or one with a probiotic blend (Pro) were processed for microscopic analysis and stained with (1) haematoxylin-eosin for structural and morphometrical investigation; (2) conventional histochemistry (periodic acid-Schiff, Alcian Blue pH 2.5, high iron diamine staining) for neutral, acidic non-sulphated, and sulphated mucin analysis; and (3) FITC-labelled MAA-II and SNA lectins for α2,3- and α2,6-sialomucin identification. Compared with No-Pro samples, Pro samples displayed (1) increased goblet cell numbers in all investigated tract crypts; (2) an increase in acidic non-sulphomucins but a decrease in neutral, sulphated and α2,6-sialomucin-secreting goblet cells in the duodenum; (3) decreased crypt depth, an increase in α2,6-sialomucin secretory goblet cells, and a loss of goblet cell-secreting α2,3-sialomucins, which appeared on the apical surface of crypt fundus epithelial cells in the caecum; and (4) an increase in α2,6-sialomucin-producing goblet cells in the colon. Results suggest that treatment with SLAB51™ induces region-specific changes in the morphology and carbohydrate composition of mucins secreted along intestinal tracts of growing-finishing pigs. These changes could ameliorate the health status of the animals, which displayed higher growth performance and meat quality than controls (Tufarelli et al., 2017).
File in questo prodotto:
File Dimensione Formato  
Desantis-34-1037-1050-2019.pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: PUBBLICO - Creative Commons
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/440330
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact